Melimine-Modified 3D-Printed Polycaprolactone Scaffolds for the Prevention of Biofilm-Related Biomaterial Infections

被引:21
|
作者
Cometta, Silvia [1 ,2 ,3 ]
Jones, Robert T. [4 ,5 ]
Juarez-Saldivar, Alfredo [6 ]
Donose, Bogdan C. [7 ]
Yasir, Muhammad [8 ]
Bock, Nathalie [3 ,9 ]
Dargaville, Tim R. [5 ]
Bertling, Karl [7 ]
Bruenig, Michael [7 ]
Rakic, Aleksandar D. [7 ]
Willcox, Mark [8 ]
Hutmacher, Dietmar W. [1 ,2 ,3 ,10 ,11 ]
机构
[1] Queensland Univ Technol, Fac Engn, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Max Planck Queensland Ctr, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, Training Ctr Multiscale 3D Imaging Modelling & Mf, Australian Res Council, Kelvin Grove, Qld 4059, Australia
[4] Queensland Univ Technol, Cent Analyt Res Facil CARF, Brisbane, Qld 4000, Australia
[5] Queensland Univ Technol, Ctr Mat Sci, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[6] Univ Autonoma Tamaulipas, Unidad Acad Multidisciplinaria Reynosa Aztlan, Reynosa 88740, Mexico
[7] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[8] Univ New South Wales, Sch Optometry & Vis Sci, Sydney, NSW 2033, Australia
[9] Queensland Univ Technol, Fac Hlth, Sch Biomed Sci, Brisbane, Qld 4000, Australia
[10] Queensland Univ Technol, Ind Transformat Training Ctr Addit Biomfg, Australian Res Council, Brisbane, Qld 4059, Australia
[11] Queensland Univ Technol, Training Ctr Cell & Tissue Engn Technol, Australian Res Council, Brisbane, Qld 4059, Australia
关键词
bacterial infection; antimicrobial peptide; polycaprolactone; 3D printing; scaffold; melimine; PEPTIDE MELIMINE; SURFACES; TISSUE; XPS;
D O I
10.1021/acsnano.2c05812
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomaterial-associated infections are one of the major causes of implant failure. These infections result from persistent bacteria that have adhered to the biomaterial surface before, during, or after surgery and have formed a biofilm on the implant's surface. It is estimated that 4 to 10% of implant surfaces are contaminated with bacteria; however, the infection rate can be as h i g h as 30% in intensive care units in developed countries and as h i g h as 45% in developing countries. To date, there is no clinical solution to prevent implant infection without relying on the use of high doses of antibiotics supplied systemically and/or removal of the infected device. In this study, melimine, a chimeric cationic peptide that has been tested in Phase I and II human clinical trials, was immobilized onto the surface of 3D-printed medical-grade polycaprolactone (mPCL) scaffolds via covalent binding and adsorption. X-ray photoelectron spectroscopy (XPS) and time-of-fl i g h t secondary ion mass spectrometry (ToF-SIMS) spectra of melimine-treated surfaces confirmed immobilization of the peptide, as wel l as its homogeneous distribution throughout the scaffold surface. Amino acid analysis showed that melimine covalent and noncovalent immobilization resulted in a peptide density of similar to 156 and similar to 533 ng/cm(2) , respectively. Furthermore, we demonstrated that the immobilization of melimine on mPCL scaffolds by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride (EDC) coupling and noncovalent interactions resulted in a reduction of Staphylococcus aureus colonization by 78.7% and 76.0%, respectiv e l y , in comparison with the nonmodified control specimens. Particularly, the modified surfaces maintained their antibacterial properties for 3 days, which resulted in the inhibition of biofilm formation in vitro. This system offers a biomaterial strategy to effectively prevent biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiot i c treatment.
引用
收藏
页码:16497 / 16512
页数:16
相关论文
共 50 条
  • [31] Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering
    Park, JiSun
    Lee, Sang Jin
    Jo, Ha Hyeon
    Lee, Jun Hee
    Kim, Wan Doo
    Lee, Jae Young
    Park, Su A.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 46 : 175 - 181
  • [32] Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration
    Meng, Zijie
    Mu, Xingdou
    He, Jiankang
    Zhang, Juliang
    Ling, Rui
    Li, Dichen
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (02)
  • [33] The Effect of Spironolactone Loading on the Properties of 3D-Printed Polycaprolactone/Gold Nanoparticles Composite Scaffolds for Myocardial Tissue Engineering
    Ghaziof, Sharareh
    Shojaei, Shahrokh
    Mehdikhani, Mehdi
    Khodaei, Mohammad
    Nodoushan, Milad Jafari
    JOURNAL OF BIONIC ENGINEERING, 2024, 21 (02) : 924 - 937
  • [34] Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration
    Zijie Meng
    Xingdou Mu
    Jiankang He
    Juliang Zhang
    Rui Ling
    Dichen Li
    International Journal of Extreme Manufacturing, 2023, 5 (02) : 195 - 211
  • [35] The Effect of Spironolactone Loading on the Properties of 3D-Printed Polycaprolactone/Gold Nanoparticles Composite Scaffolds for Myocardial Tissue Engineering
    Sharareh Ghaziof
    Shahrokh Shojaei
    Mehdi Mehdikhani
    Mohammad Khodaei
    Milad Jafari Nodoushan
    Journal of Bionic Engineering, 2024, 21 : 924 - 937
  • [36] Noninvasive In Vivo Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye
    Jing, Linzhi
    Sun, Mingtai
    Xu, Pingkang
    Yao, Kai
    Yang, Jiao
    Wang, Xiang
    Liu, Hang
    Sun, Minxuan
    Sun, Yao
    Ni, Runyan
    Sun, Jie
    Huang, Dejian
    ACS APPLIED BIO MATERIALS, 2021, 4 (04) : 3189 - 3202
  • [37] Osteogenic differentiation of human adipose-derived stem cells on polycaprolactone 3D-printed scaffolds containing bioactive bioceramic
    Najar, Saeide Mohamad
    Seyedjafari, Ehsan
    Nemati, Fahimeh
    Jamaldini, Seyed Hamid
    Rouhollah, Fatemeh
    MATERIALIA, 2024, 34
  • [38] Bone Tissue Engineering with Adipose-Derived Stem Cells in Polycaprolactone/Graphene Oxide/Dexamethasone 3D-Printed Scaffolds
    Chen, Chih-Hao
    Dash, Banendu Sunder
    Ting, Wei-Chun
    Chen, Jyh-Ping
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2024, 10 (10): : 6425 - 6440
  • [39] Osteogenic differentiation of human adipose-derived stem cells on polycaprolactone 3D-printed scaffolds containing bioactive bioceramic
    Najar, Saeide Mohamad
    Seyedjafari, Ehsan
    Nemati, Fahimeh
    Jamaldini, Seyed Hamid
    Rouhollah, Fatemeh
    Materialia, 2024, 34
  • [40] Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration
    Li, Junda
    Chen, Meilin
    Wei, Xiaoying
    Hao, Yishan
    Wang, Jinming
    MATERIALS, 2017, 10 (07)