Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit

被引:74
作者
Song, Chao [1 ]
Zheng, Shi-Biao [2 ]
Zhang, Pengfei [1 ]
Xu, Kai [1 ]
Zhang, Libo [1 ]
Guo, Qiujiang [1 ]
Liu, Wuxin [1 ]
Xu, Da [1 ]
Deng, Hui [3 ]
Huang, Keqiang [3 ,5 ]
Zheng, Dongning [3 ,5 ]
Zhu, Xiaobo [3 ,4 ]
Wang, H. [1 ,4 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Fuzhou Univ, Coll Phys & Informat Engn, Fujian Key Lab Quantum Informat & Quantum Opt, Fuzhou 350116, Fujian, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[5] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
关键词
EXPERIMENTAL REALIZATION; BERRYS PHASE; QUBIT; GATES; RESONANCE; SPIN;
D O I
10.1038/s41467-017-01156-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Experimental realization of non-Abelian non-adiabatic geometric gates [J].
Abdumalikov, A. A., Jr. ;
Fink, J. M. ;
Juliusson, K. ;
Pechal, M. ;
Berger, S. ;
Wallraff, A. ;
Filipp, S. .
NATURE, 2013, 496 (7446) :482-485
[2]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[3]   Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin [J].
Arroyo-Camejo, Silvia ;
Lazariev, Andrii ;
Hell, Stefan W. ;
Balasubramanian, Gopalakrishnan .
NATURE COMMUNICATIONS, 2014, 5
[4]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[5]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[7]   Geometric phase in open systems [J].
Carollo, A ;
Fuentes-Guridi, I ;
Santos, MF ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2003, 90 (16)
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]   Optimized pulse shapes for a resonator-induced PHASE gate [J].
Cross, Andrew W. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2015, 91 (03)
[10]   Berry phase for a spin 1/2 particle in a classical fluctuating field [J].
De Chiara, G ;
Palma, GM .
PHYSICAL REVIEW LETTERS, 2003, 91 (09)