Transitivity of Heisenberg group extensions of hyperbolic systems

被引:3
作者
Melbourne, Ian [1 ]
Nitica, Viorel [2 ,3 ]
Toeroek, Andrei [3 ,4 ]
机构
[1] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey, England
[2] W Chester Univ, Dept Math, W Chester, PA 19383 USA
[3] Acad Romana, Inst Math, RO-70700 Bucharest, Romania
[4] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
英国工程与自然科学研究理事会;
关键词
STABLE TRANSITIVITY; NONCOMPACT EXTENSIONS; DIFFEOMORPHISMS;
D O I
10.1017/S014338571000091X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that among C-r extensions (r > 0) of a uniformly hyperbolic dynamical system with fiber the standard real Heisenberg group H-n of dimension 2(n) + 1, those that avoid an obvious obstruction to topological transitivity are generically topologically transitive. Moreover, if one considers extensions with fiber a connected nilpotent Lie group with a compact commutator subgroup (for example H-n/Z), among those that avoid the obvious obstruction, topological transitivity is open and dense.
引用
收藏
页码:223 / 235
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 1979, FUNDAMENTALS THEORY
[2]   The Walters condition [J].
Bousch, T .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (02) :287-311
[3]   Stable ergodicity for smooth compact Lie group extensions of hyperbolic basic sets [J].
Field, M ;
Melbourne, I ;
Török, A .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :517-551
[4]  
Katok A., 1995, INTRO MODERN THEORY, DOI 10.1017/CBO9780511809187
[5]  
Melbourne I, 2006, DISCRETE CONT DYN-A, V14, P355
[6]   Stable transitivity of certain noncompact extensions of hyperbolic systems [J].
Melbourne, I ;
Nitica, V ;
Török, A .
ANNALES HENRI POINCARE, 2005, 6 (04) :725-746
[7]   Stable transitivity of Euclidean group extensions [J].
Melbourne, I ;
Nicol, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :611-619
[8]   Transitivity of Euclidean-type extensions of hyperbolic systems [J].
Melbourne, I. ;
Nitica, V. ;
Torok, A. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 :1585-1602
[9]   Transitivity of euclidean extensions of anosov diffeomorphisms [J].
Nitica, V ;
Pollicottt, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :257-269
[10]   An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one [J].
Nitica, V ;
Török, A .
TOPOLOGY, 2001, 40 (02) :259-278