Partial synchronization of chaotic systems with uncertainty

被引:10
|
作者
Yu, Dongchuan [1 ]
Parlitz, Ulrich [2 ]
机构
[1] Qingdao Univ, Coll Automat Engn, Qingdao 266071, Shandong, Peoples R China
[2] Univ Gottingen, Drittes Phys Inst, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 06期
关键词
D O I
10.1103/PhysRevE.77.066208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We suggest an approach to partial synchronization of chaotic systems with uncertainty. This method contains two steps: (i) transforming the synchronization system into the canonical form by the well-known feedback linearization theory and (ii) finding a control signal to ensure the asymptotic stability of the canonical system. This partial synchronization approach requires very little system information by applying a finite-time convergence technique to estimate uncertainties caused by unknown states, parameters, or structure. We also argue in detail that this partial synchronization method can be extended to parameter identification, (sub)structure estimation, and even phase detection. Several examples are presented to illustrate the partial synchronization approach suggested.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Synchronization of chaotic systems with parametric uncertainty and mismatch
    Wen, C. Y.
    Ji, Y.
    Soh, Y. C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (05): : 1445 - 1459
  • [2] Synchronization of the Unified Chaotic Systems with Disturbance and Uncertainty
    Cai, Na
    Jing, Yuanwei
    Zhang, Siying
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 804 - 808
  • [3] Simple example of partial synchronization of chaotic systems
    Hasler, M.
    Maistrenko, Yu.
    Popovych, O.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (5-B):
  • [4] Simple example of partial synchronization of chaotic systems
    Hasler, M
    Maistrenko, Y
    Popovych, O
    PHYSICAL REVIEW E, 1998, 58 (05): : 6843 - 6846
  • [5] Parameter Identification and Partial Synchronization of Different Chaotic Systems
    Yang, Ying
    Jiang, Minghui
    Liu, Wenqing
    2012 IEEE FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2012, : 610 - 614
  • [6] Mechanism for the partial synchronization in three coupled chaotic systems
    Lim, W
    Kim, SY
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [7] Partial anti-synchronization in a class of chaotic systems
    Wu, Cong
    Li, Shengzheng
    Dong, Zhen
    Guo, Rongwei
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 148 - 153
  • [8] Practical impulsive synchronization of chaotic systems with parametric uncertainty and mismatch
    Wen, C. Y.
    Ji, Y.
    Li, Z. G.
    PHYSICS LETTERS A, 2007, 361 (1-2) : 108 - 114
  • [9] Partial Anti-Synchronization in a Class of Chaotic and Hyper-Chaotic Systems
    Guo, Rongwei
    Qi, Yi
    IEEE ACCESS, 2021, 9 : 46303 - 46312
  • [10] Synchronization between fractional order complex chaotic systems with uncertainty
    Singh, Ajit K.
    Yadav, Vijay K.
    Das, S.
    OPTIK, 2017, 133 : 98 - 107