Reduced-Space Relevance Vector Machine for Adaptive Electrical Capacitance Volume Tomography

被引:6
作者
Acero, Daniel Ospina [1 ]
Marashdeh, Qussai M. [2 ]
Teixeira, Fernando L. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, ElectroSci Lab, Columbus, OH 43212 USA
[2] Tech4Imaging LLC, Columbus, OH 43235 USA
关键词
Relevance Vector Machine; image reconstruction; electrical capacitance tomography; process tomography;
D O I
10.1109/TCI.2021.3137149
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce an efficient synthetic electrode selection strategy for use in Adaptive Electrical Capacitance Volume Tomography (AECVT). The proposed strategy is based on the Adaptive Relevance Vector Machine (ARVM) method and allows to successively obtain synthetic electrode configurations that yield the most decrease in the image reconstruction uncertainty for the spatial distribution of the permittivity in the region of interest. The problem is first formulated as an instance of the Quadratic Unconstrained Binary Optimization (QUBO). By noting that the QUBO formulation is an NP-hard problem and thus prohibitive in practice, we then introduce the Reduced ARVM method, corresponding to the application of the ARVM method to a reduced search space. By using the Reduced ARVM method, good image reconstruction and low uncertainty levels can be achieved in AECVT with considerably fewer measurements. To corroborate our analysis, we present simulation results for three representative AECVT scenarios.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 51 条
[1]   Efficient and Flexible Sensitivity Matrix Computation for Adaptive Electrical Capacitance Volume Tomography [J].
Acero, Daniel Ospina ;
Chowdhury, Shah M. ;
Marashdeh, Qussai M. ;
Teixeira, Fernando L. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[2]  
Acero DO, 2019, IEEE ANTENNAS PROP, P1019, DOI [10.1109/APUSNCURSINRSM.2019.8889129, 10.1109/apusncursinrsm.2019.8889129]
[3]   Automatic Sensor Reconfiguration based on Adaptive Relevance Vector Machine for Uncertainty Reduction in Tomography Imaging [J].
Acero, Daniel Ospina ;
Chowdhury, Shah M. ;
Teixeira, Fernando L. ;
Marashdeh, Qussai M. .
2019 UNITED STATES NATIONAL COMMITTEE OF URSI NATIONAL RADIO SCIENCE MEETING (USNC-URSI NRSM), 2019,
[4]   Iterative Multiresolution Bayesian CS for Microwave Imaging [J].
Anselmi, Nicola ;
Poli, Lorenzo ;
Oliveri, Giacomo ;
Massa, Andrea .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (07) :3665-3677
[5]   Radar Change Imaging With Undersampled Data Based on Matrix Completion and Bayesian Compressive Sensing [J].
Bi, Hui ;
Jiang, Chenglong ;
Zhang, Bingchen ;
Wang, Zhengdao ;
Hong, Wen .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (07) :1546-1550
[6]  
Bishop C., 2006, Pattern Recognition and Machine Learning
[7]   Inverse Normalization Method for Cross-Sectional Imaging and Velocimetry of Two-Phase Flows Based on Electrical Capacitance Tomography [J].
Chowdhury, Shah ;
Marashdeh, Qussai M. ;
Teixeira, Fernando L. .
IEEE SENSORS LETTERS, 2018, 2 (01)
[8]   Electronic Scanning Strategies in Adaptive Electrical Capacitance Volume Tomography: Tradeoffs and Prospects [J].
Chowdhury, Shah M. ;
Marashdeh, Qussai M. ;
Teixeira, Fernando L. .
IEEE SENSORS JOURNAL, 2020, 20 (16) :9253-9264
[9]   What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO [J].
Dunning, Iain ;
Gupta, Swati ;
Silberholz, John .
INFORMS JOURNAL ON COMPUTING, 2018, 30 (03) :608-624
[10]   Ultra-wideband microwave imaging of breast cancer tumors via Bayesian inverse scattering [J].
Fouda, A. E. ;
Teixeira, F. L. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (06)