Predicting postmortem interval based on microbial community sequences and machine learning algorithms

被引:60
作者
Liu, Ruina [1 ]
Gu, Yuexi [2 ]
Shen, Mingwang [3 ]
Li, Huan [4 ]
Zhang, Kai [1 ]
Wang, Qi [5 ]
Wei, Xin [1 ]
Zhang, Haohui [1 ]
Wu, Di [1 ]
Yu, Kai [1 ]
Cai, Wumin [1 ]
Wang, Gongji [1 ]
Zhang, Siruo [4 ]
Sun, Qinru [1 ]
Huang, Ping [6 ]
Wang, Zhenyuan [1 ]
机构
[1] Xi An Jiao Tong Univ, Coll Forens Med, Xian 710061, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710061, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Hlth Sci Ctr, Xian 710061, Shaanxi, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Basic Med Sci, Dept Microbiol & Immunol, Xian, Peoples R China
[5] Chongqing Med Univ, Coll Basic Med, Dept Forens Med, Chongqing 400016, Peoples R China
[6] Minist Justice, Shanghai Forens Serv Platform, Shanghai Key Lab Forens Med, Acad Forens Sci, Shanghai 200063, Peoples R China
基金
中国国家自然科学基金;
关键词
POTENTIAL USE; RANDOM FOREST; SUCCESSION; CLASSIFICATION; TIME; DECOMPOSITION; KNOWLEDGE; MARKER; CANCER; DEATH;
D O I
10.1111/1462-2920.15000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microbes play an essential role in the decomposition process but were poorly understood in their succession and behaviour. Previous researches have shown that microbes show predictable behaviour that starts at death and changes during the decomposition process. Research of such behaviour enhances the understanding of decomposition and benefits estimating the postmortem interval (PMI) in forensic investigations, which is critical but faces multiple challenges. In this study, we combined microbial community characterization, microbiome sequencing from different organs (i.e. brain, heart and cecum) and machine learning algorithms [random forest (RF), support vector machine (SVM) and artificial neural network (ANN)] to investigate microbial succession pattern during corpse decomposition and estimate PMI in a mouse corpse system. Microbial communities exhibited significant differences between the death point and advanced decay stages. Enterococcus faecalis, Anaerosalibacter bizertensis, Lactobacillus reuteri, and so forth were identified as the most informative species in the decomposition process. Furthermore, the ANN model combined with the postmortem microbial data set from the cecum, which was the best combination among all candidates, yielded a mean absolute error of 1.5 +/- 0.8 h within 24-h decomposition and 14.5 +/- 4.4 h within 15-day decomposition. This integrated model can serve as a reliable and accurate technology in PMI estimation.
引用
收藏
页码:2273 / 2291
页数:19
相关论文
共 64 条
[31]   Data, information, knowledge and principle: back to metabolism in KEGG [J].
Kanehisa, Minoru ;
Goto, Susumu ;
Sato, Yoko ;
Kawashima, Masayuki ;
Furumichi, Miho ;
Tanabe, Mao .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D199-D205
[32]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[33]   HMGB1: A new marker for estimation of the postmortem interval [J].
Kikuchi, Kiyoshi ;
Kawahara, Ko-Ichi ;
Biswas, Kamal Krishna ;
Ito, Takashi ;
Tancharoen, Salunya ;
Shiomi, Naoto ;
Koda, Yoshiro ;
Matsuda, Fumiyo ;
Morimoto, Yoko ;
Oyama, Yoko ;
Takenouchi, Kazunori ;
Miura, Naoki ;
Arimura, Noboru ;
Nawa, Yuko ;
Arimura, Shinichiro ;
Jie, Meng Xiao ;
Shrestha, Binita ;
Iwata, Masahiro ;
Mera, Kentaro ;
Sameshima, Hisayo ;
Ohno, Yoshiko ;
Maenosono, Ryuichi ;
Tajima, Yutaka ;
Uchikado, Hisaaki ;
Kuramoto, Terukazu ;
Nakayama, Kenji ;
Shigemori, Minoru ;
Yoshida, Yoshihiro ;
Hashiguchi, Teruto ;
Maruyama, Ikuro .
EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2010, 1 (01) :109-111
[34]   Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences [J].
Langille, Morgan G. I. ;
Zaneveld, Jesse ;
Caporaso, J. Gregory ;
McDonald, Daniel ;
Knights, Dan ;
Reyes, Joshua A. ;
Clemente, Jose C. ;
Burkepile, Deron E. ;
Thurber, Rebecca L. Vega ;
Knight, Rob ;
Beiko, Robert G. ;
Huttenhower, Curtis .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :814-+
[35]  
Lewis-Beck M.S., 1990, POLIT ANAL, V2, P153
[36]   Application of MALDI-TOF MS for Estimating the Postmortem Interval in Rat Muscle Samples [J].
Li, Chengzhi ;
Ma, Dong ;
Deng, Kaifei ;
Chen, Yijiu ;
Huang, Ping ;
Wang, Zhenyuan .
JOURNAL OF FORENSIC SCIENCES, 2017, 62 (05) :1345-1350
[37]   Postmortem interval determination using 18S-rRNA and microRNA [J].
Li Wen-Can ;
Ma Kai-Jun ;
Lv Ye-Hui ;
Zhang Ping ;
Pan Hui ;
Zhang Heng ;
Wang Hui-Jun ;
Ma Duan ;
Chen Long .
SCIENCE & JUSTICE, 2014, 54 (04) :307-310
[38]  
Li Yu-jian, 2007, Journal of Beijing University of Technology, V33, P1333
[39]   Machine Learning on Human Muscle Transcriptomic Data for Biomarker Discovery and Tissue-Specific Drug Target Identification [J].
Mamoshina, Polina ;
Volosnikova, Marina ;
Ozerov, Ivan, V ;
Putin, Evgeny ;
Skibina, Ekaterina ;
Cortese, Franco ;
Zhavoronkov, Alex .
FRONTIERS IN GENETICS, 2018, 9
[40]  
Megyesi MS, 2005, J FORENSIC SCI, V50, P618