Nonlinear optomechanical paddle nanocavities

被引:36
作者
Kaviani, Hamidreza [1 ,2 ]
Healey, Chris [1 ,2 ]
Wu, Marcelo [1 ,2 ]
Ghobadi, Roohollah [3 ]
Hryciw, Aaron [1 ,4 ]
Barclay, Paul E. [1 ,2 ]
机构
[1] Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[2] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[3] TU Wien, Inst Atom & Subat Phys, A-1020 Vienna, Austria
[4] Univ Alberta, NanoFAB Facil, Edmonton, AB T6G 2R3, Canada
基金
奥地利科学基金会; 加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
CAVITY; CRYSTALS;
D O I
10.1364/OPTICA.2.000271
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlinear optomechanical coupling is the basis for many potential future experiments in quantum optomechanics (e.g., quantum nondemolition measurements, preparation of nonclassical states), which to date have been difficult to realize due to small nonlinearity in typical optomechanical devices. Here we introduce an optomechanical system combining strong nonlinear optomechanical coupling, low mass, and large optical mode spacing. This nanoscale "paddle nanocavity" supports mechanical resonances with hundreds of femtograms of mass that couple nonlinearly to optical modes with a quadratic optomechanical coupling coefficient g((2)) > 2 pi x 400 MHz/nm(2), and a single-photon to two-phonon optomechanical coupling rate of Delta omega(0) > 2 pi x 16 Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly nondegenerate. Nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T>50 mK, and measurement of phonon shot noise is achievable. This shows that strong nonlinear effects can be realized without relying on coupling between nearly degenerate optical modes, thus avoiding the parasitic linear coupling present in two-mode systems. (C) 2015 Optical Society of America
引用
收藏
页码:271 / 274
页数:4
相关论文
共 32 条
[1]  
[Anonymous], ARXIV14045746
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Optomechanical trapping and cooling of partially reflective mirrors [J].
Bhattacharya, M. ;
Uys, H. ;
Meystre, P. .
PHYSICAL REVIEW A, 2008, 77 (03)
[4]   Quantum dynamics of an optical cavity coupled to a thin semitransparent membrane: Effect of membrane absorption [J].
Biancofiore, C. ;
Karuza, M. ;
Galassi, M. ;
Natali, R. ;
Tombesi, P. ;
Di Giuseppe, G. ;
Vitali, D. .
PHYSICAL REVIEW A, 2011, 84 (03)
[5]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[6]   Quantum Measurement of Phonon Shot Noise [J].
Clerk, A. A. ;
Marquardt, Florian ;
Harris, J. G. E. .
PHYSICAL REVIEW LETTERS, 2010, 104 (21)
[7]   Nonlinear optomechanics in the stationary regime [J].
Doolin, C. ;
Hauer, B. D. ;
Kim, P. H. ;
MacDonald, A. J. R. ;
Ramp, H. ;
Davis, J. P. .
PHYSICAL REVIEW A, 2014, 89 (05)
[8]   Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals [J].
Eichenfield, Matt ;
Chan, Jasper ;
Safavi-Naeini, Amir H. ;
Vahala, Kerry J. ;
Painter, Oskar .
OPTICS EXPRESS, 2009, 17 (22) :20078-20098
[9]   Optomechanical crystals [J].
Eichenfield, Matt ;
Chan, Jasper ;
Camacho, Ryan M. ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 462 (7269) :78-82
[10]   Fiber-cavity-based optomechanical device [J].
Flowers-Jacobs, N. E. ;
Hoch, S. W. ;
Sankey, J. C. ;
Kashkanova, A. ;
Jayich, A. M. ;
Deutsch, C. ;
Reichel, J. ;
Harris, J. G. E. .
APPLIED PHYSICS LETTERS, 2012, 101 (22)