Quasirandom groups

被引:146
作者
Gowers, W. T. [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
关键词
D O I
10.1017/S0963548307008826
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Babai and SOs have asked whether there exists a constant c > 0 such that every finite group G has a product-free subset of size at least c vertical bar G vertical bar: that is, a subset X that does not contain three elements x, y and z with xy = z. In this paper we show that the answer is no. Moreover, we give a simple sufficient condition for a group not to have any large product-free subset.
引用
收藏
页码:363 / 387
页数:25
相关论文
共 12 条
[1]  
BABAI L, 1990, MATH COMPUT, V55, P705, DOI 10.1090/S0025-5718-1990-1035925-1
[2]  
Babai L., 1985, EUROPEAN J COMBIN, V6, P101, DOI DOI 10.1016/S0195-6698(85)80001-9
[3]   Hermitian matrices and graphs:: singular values and discrepancy [J].
Bollobás, B ;
Nikiforov, V .
DISCRETE MATHEMATICS, 2004, 285 (1-3) :17-32
[4]   QUASI-RANDOM GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL ;
WILSON, RM .
COMBINATORICA, 1989, 9 (04) :345-362
[5]   QUASI-RANDOM SUBSETS OF ZN [J].
CHUNG, FRK ;
GRAHAM, RL .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 61 (01) :64-86
[6]   Quasirandomness, counting and regularity for 3-uniform hypergraphs [J].
Gowers, WT .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2) :143-184
[7]   A new proof of Szemeredi's theorem [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :465-588
[8]   Large product-free subsets of finite groups [J].
Kedlaya, KS .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 77 (02) :339-343
[9]   Product-free subsets of groups [J].
Kedlaya, KS .
AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (10) :900-906
[10]   RAMANUJAN GRAPHS [J].
LUBOTZKY, A ;
PHILLIPS, R ;
SARNAK, P .
COMBINATORICA, 1988, 8 (03) :261-277