Peritectic solidification mechanism and accompanying microhardness enhancement of rapidly quenched Ni-Zr alloys

被引:4
作者
Si, Y. F. [1 ]
Wang, H. P. [1 ]
Lu, P. [1 ]
Wei, B. [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Phys, Xian 710072, Shaanxi, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2019年 / 125卷 / 02期
基金
中国国家自然科学基金;
关键词
MICROSTRUCTURE; GROWTH; TRANSITION; SELECTION; BEHAVIOR;
D O I
10.1007/s00339-019-2399-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hypoperitectic, peritectic, and hyperperitectic Ni-Zr alloys were rapidly solidified by melt spinning technique. The effect of cooling rate on their phase selection and microhardness was investigated. When the cooling rate reaches 1.0x10(7) K/s, the growth of primary Ni7Zr2 and interdendritic eutectic ((Ni)+Ni5Zr) phases during the solidification of peritectic Ni-16.7 at.% Zr alloy melt is inhibited, and complete peritectic Ni5Zr phase forms. The formation ability of complete peritectic Ni5Zr phase of hypoperitectic Ni-16 at.% Zr alloy is considerably higher than that of peritectic Ni-16.7 at.% Zr alloy. With the increase of cooling rate, the competitive growth of the primary Ni7Zr2 phase and the peritectic Ni5Zr phase occurs in the hyperperitectic Ni-20 at.% Zr alloy. The microstructure of primary Ni7Zr2 phase evolves from coarse dendrite to island banding. Furthermore, the microhardness of Ni-Zr peritectic type alloys is enhanced with the rise of cooling rate. In the case of peritectic Ni-16.7 at.% Zr alloy, this increases from 3.98 to 7.01 GPa, realizing an enhancement of 76.8%.
引用
收藏
页数:12
相关论文
共 49 条
[31]   Structural and low-temperature magnetic properties of as-quenched and annealed Ni-Si-B alloys produced by rapid solidification [J].
Ipatov, M. ;
Zhukova, V ;
Dominguez, L. ;
Alvarez, K. L. ;
Chizhik, A. ;
Zhukov, A. ;
Gonzalez, J. .
INTERMETALLICS, 2021, 132
[32]   Rapid solidification structure and grain refinement mechanism of undercooled Cu60Ni40 alloys [J].
Wang, Hongfu ;
Tang, Cheng ;
An, Hongen ;
Xu, Xiaolong ;
Zhao, Yuhong .
MATERIALS SCIENCE AND TECHNOLOGY, 2022, 38 (02) :69-77
[33]   Crystallization Features of Rapidly Quenched Ti50Ni20Cu30 Amorphous Alloys after High-Pressure Torsion [J].
N. N. Sitnikov ;
A. V. Shelyakov ;
R. V. Sundeev ;
I. A. Khabibullina .
Physics of the Solid State, 2020, 62 :733-738
[34]   Mechanical properties and microstructures of rapidly solidified Al89.5Ni8Zr2.5 and Al88.5Ni8Ti3.5 alloys [J].
J. Q Guo ;
N. S Kazama ;
K Ohtera .
Journal of Materials Science, 1998, 33 :1445-1449
[35]   Aging-induced enhancement of corrosion resistance in Al-4Ni-1Mn alloys through Al3(Sc, Zr) precipitates [J].
Masthong, Anuchit ;
Eskin, Dmitry ;
Limmaneevichitr, Chaowalit ;
Pandee, Phromphong ;
Diewwanit, Onnjira ;
Chankitmunkong, Suwaree .
JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1026
[36]   Hot Tearing Susceptibility and Solidification Behavior of Mg-xGd-(4-x)Y-2Ni-0.5Zr Alloys [J].
Yin, Xiunan ;
Wang, Chunxia ;
Liu, Zheng ;
Lao, Yunfei ;
Liu, Zhenglong ;
Li, Yinghao .
INTEGRATED FERROELECTRICS, 2024, 240 (02) :369-382
[37]   Hydrogenation of (Zr69.5Al7.5CU12Ni11)100-xTix quasicrystalline alloys and its effect on their structural and microhardness behavior [J].
Singh, Devinder ;
Shahi, Rohit R. ;
Yadav, T. P. ;
Mandal, R. K. ;
Tiwari, R. S. ;
Srivastava, O. N. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2013, 380 :11-16
[38]   Rapid solidification mechanism of liquid quinary Ni-Zr-Ti-Al-Cu alloy investigated by high-speed cinematography [J].
Xu Shan-Sen ;
Chang Jian ;
Wu Yu-Hao ;
Sha Sha ;
Wei Bing-Bo .
ACTA PHYSICA SINICA, 2019, 68 (19)
[39]   Solidification microstructure evolution and grain refinement mechanism under high undercooling of undercooled Ni90Cu10 alloys [J].
Liang, Lei ;
Xu, Xiaolong ;
Zhao, Yuhong ;
Hou, Hua .
MATERIALS RESEARCH EXPRESS, 2019, 6 (12)
[40]   Features of Crystallization of Rapidly Quenched Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 Alloys from Melt with High-Temperature Shape Memory Effect [J].
Pushin, A. V. ;
Pushin, V. G. ;
Kuntsevich, T. E. ;
Kuranova, N. N. ;
Makarov, V. V. ;
Uksusnikov, A. N. ;
Kourov, N. I. .
TECHNICAL PHYSICS, 2017, 62 (12) :1843-1847