Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties

被引:1118
作者
Hu, Han [1 ]
Guan, Buyuan [1 ]
Xia, Baoyu [1 ]
Lou, Xiong Wen [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
关键词
OXYGEN REDUCTION REACTION; GENERAL FORMATION; CATALYTIC APPLICATIONS; EVOLUTION REACTION; HOLLOW STRUCTURES; HIGH-PERFORMANCE; NANOWIRE ARRAYS; COBALT OXIDE; METAL; CO3O4;
D O I
10.1021/jacs.5b02465
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hollow structures with high complexity in Shell architecture, and composition have attracted tremendous interest because of their great importance for both fundamental studies and practical applications. Herein we report the designed sytithesis of novel box-in-box nanocages (NCs) with different shell Compositions, namely, Co3O4/NiCo2O4 double-shelled nanocages (DSNCs). Uniform zeolitic imidazolate framework-67/Ni-Co layered double hydroxides yolk shelled structures are first synthesized and then transformed: into:). Co3O4/NiCO2O4 DSNCs by thermal annealing, in air. Importantly, this strategy can be easily extended to prepare other complex DSNCs. When,evaluated as electrodes for pseudocapacitors, the Co3O4/NiCo2O4 DSNCs show a high specific capacitance of 972 F g(-1) at a current density of 5 A g(-1) and excellent Stability with 92.5% capacitance retention after 12 000 cycles, superior to that of Co3O4 NCs with simple configuration and Co3O4/Co3O4 DSNCs. Besides, the Co3O4/NiCo2O4 DSNCs also exhibit much better electrocatalytic activity for the oxygen evolution reaction than Co3O4 NCs. The greatly improved electrochemical performance of Co3O4/NiCo2O4 DSNCs demonstrates the importance of rational design and synthesis of hollow structures with higher complexity.
引用
收藏
页码:5590 / 5595
页数:6
相关论文
共 41 条
[1]   Zeolitic imidazolate framework materials: recent progress in synthesis and applications [J].
Chen, Binling ;
Yang, Zhuxian ;
Zhu, Yanqiu ;
Xia, Yongde .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) :16811-16831
[2]   Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation [J].
Dickey, Michael D. ;
Weiss, Emily A. ;
Smythe, Elizabeth J. ;
Chiechi, Ryan C. ;
Capasso, Federico ;
Whitesides, George M. .
ACS NANO, 2008, 2 (04) :800-808
[3]   Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Efficiency [J].
Dong, Zhenghong ;
Lai, Xiaoyong ;
Halpert, Jonathan E. ;
Yang, Nailiang ;
Yi, Luoxin ;
Zhai, Jin ;
Wang, Dan ;
Tang, Zhiyong ;
Jiang, Lei .
ADVANCED MATERIALS, 2012, 24 (08) :1046-1049
[4]   Catalytic applications of layered double hydroxides: recent advances and perspectives [J].
Fan, Guoli ;
Li, Feng ;
Evans, David G. ;
Duan, Xue .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (20) :7040-7066
[5]   Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst [J].
Gao, Minrui ;
Sheng, Wenchao ;
Zhuang, Zhongbin ;
Fang, Qianrong ;
Gu, Shuang ;
Jiang, Jun ;
Yan, Yushan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) :7077-7084
[6]   Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis [J].
Gong, Ming ;
Zhou, Wu ;
Tsai, Mon-Che ;
Zhou, Jigang ;
Guan, Mingyun ;
Lin, Meng-Chang ;
Zhang, Bo ;
Hu, Yongfeng ;
Wang, Di-Yan ;
Yang, Jiang ;
Pennycook, Stephen J. ;
Hwang, Bing-Joe ;
Dai, Hongjie .
NATURE COMMUNICATIONS, 2014, 5
[7]  
Hamdani M, 2010, INT J ELECTROCHEM SC, V5, P556
[8]   Fabrication and application of inorganic hollow spheres [J].
Hu, Jing ;
Chen, Min ;
Fang, Xiaosheng ;
Wu, Limin .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (11) :5472-5491
[9]   Electrical Transport Properties of Large, Individual NiCo2O4 Nanoplates [J].
Hu, Linfeng ;
Wu, Limin ;
Liao, Meiyong ;
Hu, Xinhua ;
Fang, Xiaosheng .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (05) :998-1004
[10]   LDH nanocages synthesized with MOF templates and their high performance as supercapacitors [J].
Jiang, Zhen ;
Li, Zhengping ;
Qin, Zhenhua ;
Sun, Haiyan ;
Jiao, Xiuling ;
Chen, Dairong .
NANOSCALE, 2013, 5 (23) :11770-11775