Bifurcation and blow-up results for equations with p-Laplacian and convex-concave nonlinearity

被引:0
作者
Ilyasov, Yavdat Shavkatovich [1 ]
机构
[1] Russian Acad Sci, Ufa Sci Ctr, Inst Math, 112 Chernyshevsky Str, Ufa 450008, Russia
关键词
concave-convex nonlinearity; Collatz-Wielandt formula; p-Laplacian; bifurcation; blow up; 2ND-ORDER ELLIPTIC-OPERATORS; PRINCIPAL EIGENVALUE; POSITIVE SOLUTIONS; MAXIMUM PRINCIPLE; REGULARITY; EXISTENCE;
D O I
10.14232/ejqtde.2017.1.96
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of global, blow-up and bifurcation solutions for parametrized families of elliptic and parabolic equations with p-Laplacian and concave-convex nonlinearity. The main results are obtained by means of a generalised Collatz-Wielandt formula.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 42 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
Ambrosetti A., 2000, Rend. Mat. Appl., V20, P167
[4]  
[Anonymous], 1950, MATH Z
[5]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[6]  
[Anonymous], 1980, Commun. Partial Differ. Equ
[7]  
[Anonymous], 1992, PITMAN RES NOTES MAT
[8]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[9]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[10]  
[Anonymous], 1996, Adv. Differ. Equ.