Linear maps preserving quasi-commutativity

被引:8
作者
Radjavi, Heydar [1 ]
Semrl, Peter [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Ljubljana, Dept Math, SI-1000 Ljubljana, Slovenia
关键词
linear preserver; quasi-commutativity; commutant; quasi-commutant;
D O I
10.4064/sm184-2-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be Banach spaces and B(X) and B(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A, B is an element of B(X) quasi-commute if there exists a nonzero scalar omega such that AB = omega BA. We characterize bijective linear maps phi : B(X) -> B(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 11 条