Exceptional functions and normal families of meromorphic functions with multiple zeros

被引:2
作者
Lei, Chunlin [1 ]
Fang, Mingliang [1 ]
Yang, Degui [1 ]
Wang, Xueqin [1 ]
机构
[1] S China Agr Univ, Dept Appl Math, Guangzhou 510642, Peoples R China
基金
中国国家自然科学基金;
关键词
meromorphic functions; holomorphic functions; normal families;
D O I
10.1016/j.jmaa.2007.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a positive integer with k >= 2; let h(not equivalent to 0) be a holomorphic function which has no simple zeros in D; and let F be a family of meromorphic functions defined in D, all of whose poles are multiple, and all of whose zeros have multiplicity at least k + 1. If, for each function f is an element of F, f((k))(z) not equal h(z), then F is normal in D. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:224 / 234
页数:11
相关论文
共 13 条
[11]   Normal Families of Meromorphic Functions whose Derivatives Omit a Function [J].
Xuecheng Pang ;
Degui Yang ;
Lawrence Zalcman .
Computational Methods and Function Theory, 2003, 2 (1) :257-265
[12]   Normal families: New perspectives [J].
Zalcman, L .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 35 (03) :215-230
[13]  
ZALCMAN L, 1994, UNPUB SOME PROBLEMS