Exceptional functions and normal families of meromorphic functions with multiple zeros

被引:2
作者
Lei, Chunlin [1 ]
Fang, Mingliang [1 ]
Yang, Degui [1 ]
Wang, Xueqin [1 ]
机构
[1] S China Agr Univ, Dept Appl Math, Guangzhou 510642, Peoples R China
基金
中国国家自然科学基金;
关键词
meromorphic functions; holomorphic functions; normal families;
D O I
10.1016/j.jmaa.2007.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a positive integer with k >= 2; let h(not equivalent to 0) be a holomorphic function which has no simple zeros in D; and let F be a family of meromorphic functions defined in D, all of whose poles are multiple, and all of whose zeros have multiplicity at least k + 1. If, for each function f is an element of F, f((k))(z) not equal h(z), then F is normal in D. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:224 / 234
页数:11
相关论文
共 13 条
[1]  
Bergweiler W, 1995, REV MAT IBEROAM, V11, P355
[2]  
CHEN HH, 1995, SCI CHINA SER A, V38, P789
[3]  
Gu, 1979, SCI SINICA, P267
[4]  
Hayman W K., 1964, MEROMORPHIC FUNCTION
[5]   Normal families and shared values [J].
Pang, XC ;
Zalcman, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :325-331
[6]   Normal families of meromorphic functions with multiple zeros and poles [J].
Pang, XC ;
Zalcman, L .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 136 (1) :1-9
[7]  
Schiff J.L., 1993, Normal Families
[8]  
Wang YF, 1998, ACTA MATH SIN, V14, P17
[9]   Normality and exceptional functions of derivatives [J].
Xu, Y .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 :403-413
[10]  
Yang L., 1993, VALUE DISTRIBUTION T