Commutators of Bilinear θ-Type Calderon-Zygmund Operators on Morrey Spaces Over Non-Homogeneous Spaces

被引:18
作者
Lu, G. -H. [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
关键词
non-homogeneous metric measure space; commutator; bilinear theta-type Calderon-Zygmund operator; R(BM)over-tildeO(mu); Morrey space; HARDY-SPACES; MULTILINEAR COMMUTATORS; FRACTIONAL INTEGRALS; H-1; BOUNDEDNESS; INEQUALITIES; BMO;
D O I
10.1007/s10476-020-0020-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to establish the boundedness of the commutator [b(1), b(2), T-theta], which generated by the bilinear theta-type Calderon-Zygmund operators T-theta and the functions b(1),b(2)is an element of(RBMO) over tilde(mu), on non-homogeneous metric measure space satisfying the so-called geometrically doubling and the upper doubling conditions. Under the assumption that the dominating function lambda satisfies the epsilon-weak reverse doubling conditions, the author proves that the commutator [b(1), b(2), T-theta] is bounded from the Lebesgue space L-p(mu) into the product of Lebesgue space L-p1(mu)xL(p2)(mu) with 1/p=1/p(1)+1/p(2)((1 < p, p(1), p(2) < infinity). Furthermore, the boundedness of the commutator [b(1), b(2), T-theta] on Morrey space M-p(q) (mu) is also obtained, where 1 < q <= p < infinity.
引用
收藏
页码:97 / 118
页数:22
相关论文
共 30 条
  • [1] Morrey Spaces for Nonhomogeneous Metric Measure Spaces
    Cao Yonghui
    Zhou Jiang
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [2] Maximal Multilinear Commutators on Non-homogeneous Metric Measure Spaces
    Chen, Jie
    Lin, Haibo
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 1133 - 1160
  • [3] Calderon-Zygmund operators on Hardy spaces without the doubling condition
    Chen, W
    Meng, Y
    Yang, DC
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (09) : 2671 - 2680
  • [4] A note on commutators of fractional integrals with RBMO(μ) functions
    Chen, WG
    Sawyer, E
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) : 1287 - 1298
  • [5] COIFMAN R, 1971, ANAL HARMONIQUE NONC
  • [6] EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS
    COIFMAN, RR
    WEISS, G
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) : 569 - 645
  • [7] GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS OVER NON-HOMOGENEOUS METRIC MEASURE SPACES
    Fu, Xing
    Yang, Dachun
    Yuan, Wen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 509 - 557
  • [8] The molecular characterization of the Hardy space H1 on non-homogeneous metric measure spaces and its application
    Fu, Xing
    Yang, Dachun
    Yang, Dongyong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) : 1028 - 1042
  • [9] BOUNDEDNESS OF MULTILINEAR COMMUTATORS OF CALDERON-ZYGMUND OPERATORS ON ORLICZ SPACES OVER NON-HOMOGENEOUS SPACES
    Fu, Xing
    Yang, Dachun
    Yuan, Wen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2203 - 2238
  • [10] New atomic characterization of H1 space with non-doubling measures and its applications
    Hu, G
    Meng, Y
    Yang, DC
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2005, 138 : 151 - 171