Enhanced hydrogen storage properties of LiBH4-MgH2 composite by the catalytic effect of MoCl3

被引:28
作者
Xia, Guang-lin [1 ,2 ,3 ]
Leng, Hai-yan [1 ]
Xu, Nai-xin [1 ]
Li, Zhi-lin [1 ]
Wu, Zhu [1 ]
Du, Jun-lin [1 ,3 ]
Yu, Xue-bin [2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Energy Sci & Technol Lab, Shanghai 200050, Peoples R China
[2] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
Hydrogen storage materials; Lithium borohydride; Magnesium hydride; LITHIUM BOROHYDRIDE; AMMONIA-BORANE; THERMAL-ANALYSIS; CARBON; DEHYDROGENATION; DESTABILIZATION; MAGNESIUM; KINETICS; HYDRIDES; SYSTEMS;
D O I
10.1016/j.ijhydene.2011.03.060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Though LiBH4-MgH2 system exhibits an excellent hydrogen storage property, it still presents high decomposition temperature over 350 degrees C and sluggish hydrogen absorption/desorption kinetics. In order to improve the hydrogen storage properties, the influence of MoCl3 as an additive on the hydrogenation and dehydrogenation properties of LiBH4-MgH2 system is investigated. The reversible hydrogen storage performance is significantly improved, which leads to a capacity of about 7 wt.% hydrogen at 300 degrees C. XRD analysis reveals that the metallic Mo is formed by the reaction between LiBH4 and MoCl3, which is highly dispersed in the sample and results in improved dehydrogenation and hydrogenation performance of LiBH4-MgH2 system. From Kissinger plot, the activation energy for hydrogen desorption of LiBH4-MgH2 system with additive MoCl3 is estimated to be similar to 43 kJ mol(-1) H-2, 10 kJ mol(-1) lower than that for the pure LiBH4-MgH2 system indicating that the kinetics of LiBH4-MgH2 composite is significantly improved by the introduction of Mo. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7128 / 7135
页数:8
相关论文
共 48 条
[31]   Hydrogen-storage materials for mobile applications [J].
Schlapbach, L ;
Züttel, A .
NATURE, 2001, 414 (6861) :353-358
[32]   Altering hydrogen storage properties by hydride destabilization through alloy formation:: LiH and MgH2 destabilized with Si [J].
Vajo, JJ ;
Mertens, F ;
Ahn, CC ;
Bowman, RC ;
Fultz, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (37) :13977-13983
[33]   Reversible storage of hydrogen in destabilized LiBH4 [J].
Vajo, JJ ;
Skeith, SL ;
Mertens, F .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (09) :3719-3722
[34]   The effects of ball milling and nanometric nickel additive on the hydrogen desorption from lithium borohydride and manganese chloride (3LiBH4 + MnCl2) mixture [J].
Varin, R. A. ;
Zbroniec, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (08) :3588-3597
[35]   Enhanced hydrogen storage performance of LiBH4-Ni composite [J].
Xia, G. L. ;
Guo, Y. H. ;
Wu, Z. ;
Yu, X. B. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 479 (1-2) :545-548
[36]   Direct synthesis of nanocrystalline NaAlH4 complex hydride for hydrogen storage [J].
Xiao, X. Z. ;
Chen, L. X. ;
Fan, X. L. ;
Wang, X. H. ;
Chen, C. P. ;
Lei, Y. Q. ;
Wang, Q. D. .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[37]   Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles [J].
Xu, Juan ;
Yu, Xuebin ;
Zou, Zhiqing ;
Li, Zhilin ;
Wu, Zhu ;
Akins, Daniel L. ;
Yang, Hui .
CHEMICAL COMMUNICATIONS, 2008, (44) :5740-5742
[38]   Destabilizing LiBH4 with a metal (M = Mg, Al, Ti, V, Cr, or Sc) or metal hydride (MH2, MgH2, TiH2, or CaH2) [J].
Yang, Jun ;
Sudik, Andrea ;
Wolverton, C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (51) :19134-19140
[39]   Low-temperature dehydrogenation of LiBH4 through destabilization with TiO2 [J].
Yu, X. B. ;
Grant, D. A. ;
Walker, G. S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (29) :11059-11062
[40]   Improved hydrogen storage properties of LiBH4 destabilized by carbon [J].
Yu, X. B. ;
Wu, Z. ;
Chen, Q. R. ;
Li, Z. L. ;
Weng, B. C. ;
Huang, T. S. .
APPLIED PHYSICS LETTERS, 2007, 90 (03)