Intercomparison of Arctic sea ice simulation in ROMS-CICE and ROMS-Budgell

被引:5
作者
Kumar, Rajesh [1 ,2 ]
Li, Junde [3 ]
Hedstrom, Kate [4 ]
Babanin, Alexander, V [3 ,5 ]
Holland, David M. [1 ,6 ]
Heil, Petra [7 ,8 ]
Tang, Youmin [9 ]
机构
[1] New York Univ Abu Dhabi, Ctr Global Sea Level Change, Abu Dhabi, U Arab Emirates
[2] Meteorol Serv Singapore, Ctr Climate Res Singapore, Singapore, Singapore
[3] Univ Melbourne, Dept Infrastruct Engn, Melbourne, Vic, Australia
[4] Univ Alaska Fairbanks, Coll Fisheries & Ocean Sci, Fairbanks, AK USA
[5] Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao 266237, Peoples R China
[6] NYU, Courant Inst Math Sci, New York, NY USA
[7] Univ Tasmania, Australian Antarct Div, Hobart, Tas 7001, Australia
[8] Univ Tasmania, Australian Antarctic Programme Partnership, Hobart, Tas 7001, Australia
[9] Univ Northern British Columbia, Environm Sci & Engn, Prince George, BC, Canada
基金
国家重点研发计划;
关键词
PolarCOAWST; ROMS-CICE; ROMS-Budgell; Coupled model; Sea ice; CLIMATE SYSTEM MODEL; THICKNESS DATA; PACK ICE; OCEAN; SURFACE; CRYOSAT-2; ASSIMILATION; SENSITIVITY; TRANSPORT; WAVE;
D O I
10.1016/j.polar.2021.100716
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Accurate representation of the complex ocean-sea ice interaction is still an ongoing effort. In this study, we have coupled the Community Ice Code (CICE) model and Regional Ocean Modeling System (ROMS) to develop a highresolution regional coupled ocean-sea ice model for polar regions. This setup allows us to investigate the interaction between ocean and sea ice in detail. The Coupled-Ocean-Atmosphere-Wave-Sediment-Transport (COAWST) modeling system is the core of this coupled model. Currently, the ROMS model in COAWST uses the Budgell sea ice model, embedded as a sub-module in it but introducing a more comprehensive sea ice model (CICE) may provide a better treatment of sea ice. Here, we present our preliminary results based on the coupled ROMS-CICE and ROMS-Budgell simulation over the Arctic Ocean. Our results show that both CICE and Budgell models perform better in simulating sea ice concentration during winter than during summer. Compared to the satellite observations, sea ice concentrations from the CICE model in most subregions have higher correlations and smaller centered root mean square errors, showing higher simulation skills. The sea ice thickness biases are larger in the Budgell model in the early months of the year, whereas in the CICE model they are larger after October. Both CICE and Budgell models overestimate the sea ice extent and sea ice volume in summer, and their performances differ in the subregions.
引用
收藏
页数:12
相关论文
共 86 条
  • [1] [Anonymous], 2000, NUMERICAL MODELS OCE
  • [2] Arakawa A., 1977, Methods in Computational Physics: Advances in Research and Applications, V17, P173, DOI DOI 10.1016/B978-0-12-460817-7.50009-4
  • [3] The Ocean Reanalyses Intercomparison Project (ORA-IP)
    Balmaseda, M. A.
    Hernandez, F.
    Storto, A.
    Palmer, M. D.
    Alves, O.
    Shi, L.
    Smith, G. C.
    Toyoda, T.
    Valdivieso, M.
    Barnier, B.
    Behringer, D.
    Boyer, T.
    Chang, Y-S.
    Chepurin, G. A.
    Ferry, N.
    Forget, G.
    Fujii, Y.
    Good, S.
    Guinehut, S.
    Haines, K.
    Ishikawa, Y.
    Keeley, S.
    Koehl, A.
    Lee, T.
    Martin, M. J.
    Masina, S.
    Masuda, S.
    Meyssignac, B.
    Mogensen, K.
    Parent, L.
    Peterson, K. A.
    Tang, Y. M.
    Yin, Y.
    Vernieres, G.
    Wang, X.
    Waters, J.
    Wedd, R.
    Wang, O.
    Xue, Y.
    Chevallier, M.
    Lemieux, J-F.
    Dupont, F.
    Kuragano, T.
    Kamachi, M.
    Awaji, T.
    Caltabiano, A.
    Wilmer-Becker, K.
    Gaillard, F.
    [J]. JOURNAL OF OPERATIONAL OCEANOGRAPHY, 2015, 8 : S80 - S97
  • [4] Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS
    Becker, J. J.
    Sandwell, D. T.
    Smith, W. H. F.
    Braud, J.
    Binder, B.
    Depner, J.
    Fabre, D.
    Factor, J.
    Ingalls, S.
    Kim, S-H.
    Ladner, R.
    Marks, K.
    Nelson, S.
    Pharaoh, A.
    Trimmer, R.
    Von Rosenberg, J.
    Wallace, G.
    Weatherall, P.
    [J]. MARINE GEODESY, 2009, 32 (04) : 355 - 371
  • [5] Climate Sensitivity of the Community Climate System Model, Version 4
    Bitz, C. M.
    Shell, K. M.
    Gent, P. R.
    Bailey, D. A.
    Danabasoglu, G.
    Armour, K. C.
    Holland, M. M.
    Kiehl, J. T.
    [J]. JOURNAL OF CLIMATE, 2012, 25 (09) : 3053 - 3070
  • [6] Simulating the ice-thickness distribution in a coupled climate model
    Bitz, CM
    Holland, MM
    Weaver, AJ
    Eby, M
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2001, 106 (C2) : 2441 - 2463
  • [7] Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness
    Blockley, Edward W.
    Peterson, K. Andrew
    [J]. CRYOSPHERE, 2018, 12 (11) : 3419 - 3438
  • [8] Briegleb B.P., 2007, DELTA EDDINGTON MULT, P1
  • [9] Numerical simulation of ice-ocean variability in the Barents Sea region Towards dynamical downscaling
    Budgell, W. P.
    [J]. OCEAN DYNAMICS, 2005, 55 (3-4) : 370 - 387
  • [10] Arctic Sea Ice Reemergence: The Role of Large-Scale Oceanic and Atmospheric Variability
    Bushuk, Mitchell
    Giannakis, Dimitrios
    Majda, Andrew J.
    [J]. JOURNAL OF CLIMATE, 2015, 28 (14) : 5477 - 5509