Explainable Unsupervised Machine Learning for Cyber-Physical Systems

被引:26
|
作者
Wickramasinghe, Chathurika S. [1 ]
Amarasinghe, Kasun [2 ]
Marino, Daniel L. [1 ]
Rieger, Craig [3 ]
Manic, Milos [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23220 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Idaho Natl Lab INL, Idaho Falls, ID 83415 USA
关键词
Machine learning; Data models; Machine learning algorithms; Prediction algorithms; Self-organizing feature maps; Decision making; Artificial intelligence; Explainable artificial intelligence; self-organizing maps; interpretable machine learning; unsupervised machine learning; SELF-ORGANIZING MAP; AUTOENCODER; SECURITY; MODELS;
D O I
10.1109/ACCESS.2021.3112397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cyber-Physical Systems (CPSs) play a critical role in our modern infrastructure due to their capability to connect computing resources with physical systems. As such, topics such as reliability, performance, and security of CPSs continue to receive increased attention from the research community. CPSs produce massive amounts of data, creating opportunities to use predictive Machine Learning (ML) models for performance monitoring and optimization, preventive maintenance, and threat detection. However, the "black-box" nature of complex ML models is a drawback when used in safety-critical systems such as CPSs. While explainable ML has been an active research area in recent years, much of the work has been focused on supervised learning. As CPSs rapidly produce massive amounts of unlabeled data, relying on supervised learning alone is not sufficient for data-driven decision making in CPSs. Therefore, if we are to maximize the use of ML in CPSs, it is necessary to have explainable unsupervised ML models. In this paper, we outline how unsupervised explainable ML could be used within CPSs. We review the existing work in unsupervised ML, present initial desiderata of explainable unsupervised ML for CPS, and present a Self-Organizing Maps based explainable clustering methodology which generates global and local explanations. We evaluate the fidelity of the generated explanations using feature perturbation techniques. The results show that the proposed method identifies the most important features responsible for the decision-making process of Self-organizing Maps. Further, we demonstrated that explainable Self-Organizing Maps are a strong candidate for explainable unsupervised machine learning by comparing its model capabilities and limitations with current explainable unsupervised methods.
引用
收藏
页码:131824 / 131843
页数:20
相关论文
共 50 条
  • [11] Testing Cyber-Physical Systems via Evolutionary Algorithms and Machine Learning
    Nejati, Shiva
    2019 IEEE/ACM 12TH INTERNATIONAL WORKSHOP ON SEARCH-BASED SOFTWARE TESTING (SBST 2019), 2019, : 1 - 1
  • [12] Machine Learning for Detecting Drift Fault of Sensors in Cyber-Physical Systems
    Jan, Sana Ullah
    Saeed, Umer
    Koo, Insoo
    PROCEEDINGS OF 2020 17TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2020, : 389 - 394
  • [13] Review of machine learning and deep learning mechanism in cyber-physical system
    Padmajothi, V
    Iqbal, J. L. Mazher
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 583 - 590
  • [14] On Valuing the Impact of Machine Learning Faults to Cyber-Physical Production Systems
    Cody, Tyler
    Adams, Stephen
    Beling, Peter
    Freeman, Laura
    2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 140 - 145
  • [15] Exploring the integration of blockchain technology, physical unclonable function, and machine learning for authentication in cyber-physical systems
    Al-Ghuraybi, Hind A.
    Alzain, Mohammed A.
    Soh, Ben
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (12) : 35629 - 35672
  • [16] Explainable Artificial Intelligence Enabled Intrusion Detection Technique for Secure Cyber-Physical Systems
    Almuqren, Latifah
    Maashi, Mashael S.
    Alamgeer, Mohammad
    Mohsen, Heba
    Hamza, Manar Ahmed
    Abdelmageed, Amgad Atta
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [17] Cyber Attacks in Cyber-Physical Microgrid Systems: A Comprehensive Review
    Suprabhath Koduru, Sriranga
    Machina, Venkata Siva Prasad
    Madichetty, Sreedhar
    ENERGIES, 2023, 16 (12)
  • [18] Machine Learning-Based Security Solutions for Critical Cyber-Physical Systems
    Raza, Asad
    Memon, Shahzad
    Nizamani, Muhammad Ali
    Shah, Mahmood Hussain
    2022 10TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS), 2022,
  • [19] On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products
    Varshney, Kush R.
    Alemzadeh, Homa
    BIG DATA, 2017, 5 (03) : 246 - 255
  • [20] Federated Feature Selection for Cyber-Physical Systems of Systems
    Cassara, Pietro
    Gotta, Alberto
    Valerio, Lorenzo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9937 - 9950