Explainable Unsupervised Machine Learning for Cyber-Physical Systems

被引:26
|
作者
Wickramasinghe, Chathurika S. [1 ]
Amarasinghe, Kasun [2 ]
Marino, Daniel L. [1 ]
Rieger, Craig [3 ]
Manic, Milos [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23220 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Idaho Natl Lab INL, Idaho Falls, ID 83415 USA
关键词
Machine learning; Data models; Machine learning algorithms; Prediction algorithms; Self-organizing feature maps; Decision making; Artificial intelligence; Explainable artificial intelligence; self-organizing maps; interpretable machine learning; unsupervised machine learning; SELF-ORGANIZING MAP; AUTOENCODER; SECURITY; MODELS;
D O I
10.1109/ACCESS.2021.3112397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cyber-Physical Systems (CPSs) play a critical role in our modern infrastructure due to their capability to connect computing resources with physical systems. As such, topics such as reliability, performance, and security of CPSs continue to receive increased attention from the research community. CPSs produce massive amounts of data, creating opportunities to use predictive Machine Learning (ML) models for performance monitoring and optimization, preventive maintenance, and threat detection. However, the "black-box" nature of complex ML models is a drawback when used in safety-critical systems such as CPSs. While explainable ML has been an active research area in recent years, much of the work has been focused on supervised learning. As CPSs rapidly produce massive amounts of unlabeled data, relying on supervised learning alone is not sufficient for data-driven decision making in CPSs. Therefore, if we are to maximize the use of ML in CPSs, it is necessary to have explainable unsupervised ML models. In this paper, we outline how unsupervised explainable ML could be used within CPSs. We review the existing work in unsupervised ML, present initial desiderata of explainable unsupervised ML for CPS, and present a Self-Organizing Maps based explainable clustering methodology which generates global and local explanations. We evaluate the fidelity of the generated explanations using feature perturbation techniques. The results show that the proposed method identifies the most important features responsible for the decision-making process of Self-organizing Maps. Further, we demonstrated that explainable Self-Organizing Maps are a strong candidate for explainable unsupervised machine learning by comparing its model capabilities and limitations with current explainable unsupervised methods.
引用
收藏
页码:131824 / 131843
页数:20
相关论文
共 50 条
  • [11] Unsupervised and incremental learning orchestration for cyber-physical security
    Reis, Lucio Henrik A.
    Murillo Piedrahita, Andres
    Rueda, Sandra
    Fernandes, Natalia C.
    Medeiros, Dianne S., V
    de Amorim, Marcelo Dias
    Mattos, Diogo M. F.
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2020, 31 (07)
  • [12] Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems
    Zoppi, Tommaso
    Gharib, Mohamad
    Atif, Muhammad
    Bondavalli, Andrea
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2021, 5 (04)
  • [13] Machine Learning to Empower a Cyber-Physical Machine Tool
    Letford, Flynn
    Rogers, Max
    Xu, Xun
    Lu, Yuqian
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 989 - 994
  • [14] Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods
    Mingtao Wu
    Zhengyi Song
    Young B. Moon
    Journal of Intelligent Manufacturing, 2019, 30 : 1111 - 1123
  • [15] Collaborative Learning with Cyber-physical systems
    Pester, Andreas
    Madritsch, Christian
    Klinger, Thomas
    PROCEEDINGS OF 2015 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON), 2015, : 184 - 188
  • [16] Assessing Machine Learning Techniques for Intrusion Detection in Cyber-Physical Systems
    Santos, Vinicius F.
    Albuquerque, Celio
    Passos, Diego
    Quincozes, Silvio E.
    Mosse, Daniel
    ENERGIES, 2023, 16 (16)
  • [17] On Valuing the Impact of Machine Learning Faults to Cyber-Physical Production Systems
    Cody, Tyler
    Adams, Stephen
    Beling, Peter
    Freeman, Laura
    2022 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2022), 2022, : 140 - 145
  • [18] Guest Editorial Machine Learning for Resilient Industrial Cyber-Physical Systems
    Hu, Shiyan
    Chen, Yiran
    Zhu, Qi
    Colombo, Armando Walter
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 20 (01) : 3 - 4
  • [19] Testing Cyber-Physical Systems via Evolutionary Algorithms and Machine Learning
    Nejati, Shiva
    2019 IEEE/ACM 12TH INTERNATIONAL WORKSHOP ON SEARCH-BASED SOFTWARE TESTING (SBST 2019), 2019, : 1 - 1
  • [20] A Machine Learning Approach for Fault Detection in Vehicular Cyber-Physical Systems
    Sargolzaei, Arman
    Crane, Carl D., III
    Abbaspour, Alireza
    Noei, Shirin
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 636 - 640