The Berezin form for rank one para-Hermitian symmetric spaces

被引:9
作者
Van Dijk, G
Molchanov, VF
机构
[1] Leiden Univ, Dept Math, NL-2300 RA Leiden, Netherlands
[2] Tambov State Univ, Tambov 392622, Russia
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1998年 / 77卷 / 08期
基金
俄罗斯基础研究基金会;
关键词
Berezin transform; Plancherel formula; spectral decomposition; Laplace operators; spherical functions; Fourier transform; quantization;
D O I
10.1016/S0021-7824(98)80008-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently one of the authors presented a general scheme of quantization tin the spirit of Berezin) for para-Hermitian symmetric spaces. One of the main notions of this theory is the Berezin form. It is an invariant Hermitian form, which, generally speaking, is not positive-definite. The rank one para-Hermitian spaces are exhausted by the spaces X = SL(n, R)/GL(n - 1, R), up to coverings. In this paper we decompose the Berezin form beta(mu, nu), mu is an element of R, nu = 0, 1 for these spaces X into irreducible components. For values mu < -n+1/2 the decomposition contains the same irreducible components as L-2(X), but the Plancherel measure is not necessarily positive. For mu > -n+1/2 a finite number of irreducible components, belonging to the (non-unitary) complementary series, is added, We also pay attention to the behaviour of beta(mu, nu) as mu--> -infinity, which has a meaning in the context of quantization. It turns out that the correspondence principle holds on the discrete spectrum for n even. (C) Elsevier, Paris
引用
收藏
页码:747 / 799
页数:53
相关论文
共 19 条
[1]  
[Anonymous], LINEAR OPERATORS
[2]  
Berezin F. A., 1974, MATH USSR IZV, V8, P1109, DOI 10.1070/IM1974v008n05ABEH002140
[3]  
BEREZIN FA, 1978, SOV MATH DOKL, V19, P786
[4]  
BEREZIN FA, 1973, SOV MATH DOKL, V14, P1209
[5]  
BEREZIN FA, 1975, MATH USSR IZV, V9, P341
[6]  
Kaneyuki S., 1985, Tokyo J. Math., V8, P81
[7]   TENSOR-PRODUCTS OF UNITARY REPRESENTATIONS OF THE 3-DIMENSIONAL LORENTZ GROUP [J].
MOLCANOV, VF .
MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 15 (01) :113-143
[8]  
Molchanov V.F., 1995, REPRESENTATION THEOR, P1, DOI [DOI 10.1007/978-3-662-09756-4_1, 10.1007/978-3-662-09756-4-1, DOI 10.1007/978-3-662-09756-4-1]
[9]  
MOLCHANOV VF, 1982, SIBERIAN MATH J+, V23, P703
[10]  
MOLCHANOV VF, 1996, AM MATH SOC TRANSL 2, V175, P81