On spurious solutions in finite element approximations of resonances in open systems

被引:8
作者
Araujo-Cabarcas, Juan Carlos [1 ]
Engstrom, Christian [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, Umea, Sweden
基金
瑞典研究理事会;
关键词
Scattering resonances; Lippmann-Schwinger equation; Nonlinear eigenvalue problems; Acoustic resonator; Dielectric resonator; Bragg resonator; SPECTRAL APPROXIMATION; EIGENVALUE PROBLEMS; NUMERICAL-SOLUTION; SCATTERING RESONANCES; MODES;
D O I
10.1016/j.camwa.2017.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss problems arising when computing resonances with a finite element method. In the pre-asymptotic regime, we detect for the one dimensional case, spurious solutions in finite element computations of resonances when the computational domain is truncated with a perfectly matched layer (PML) as well as with a Dirichlet-to-Neumann map (DtN). The new test is based on the Lippmann-Schwinger equation and we use computations of the pseudospectrum to show that this is a suitable choice. Numerical simulations indicate that the presented test can distinguish between spurious eigenvalues and true eigenvalues also in difficult cases. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2385 / 2402
页数:18
相关论文
共 54 条
[21]   A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media [J].
Gillman, Adrianna ;
Barnett, Alex H. ;
Martinsson, Per-Gunnar .
BIT NUMERICAL MATHEMATICS, 2015, 55 (01) :141-170
[22]   ASYMPTOTIC AND NUMERICAL TECHNIQUES FOR RESONANCES OF THIN PHOTONIC STRUCTURES [J].
Gopalakrishnan, J. ;
Moskow, S. ;
Santosa, F. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (01) :37-63
[23]   Discrete perturbation estimates for eigenpairs of Fredholm operator-valued functions [J].
Grubisic, Luka ;
Grbic, Antonia .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 267 :632-647
[24]   SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems [J].
Hernandez, V ;
Roman, JE ;
Vidal, V .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (03) :351-362
[25]   SCATTERING RESONANCES OF A HELMHOLTZ RESONATOR [J].
HISLOP, PD ;
MARTINEZ, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (02) :767-788
[26]   GALERKIN METHOD FOR NUMERICAL SOLUTION OF FREDHOLM INTEGRAL-EQUATIONS OF SECOND KIND [J].
IKEBE, Y .
SIAM REVIEW, 1972, 14 (03) :465-&
[27]   Maximization of the quality factor of an optical resonator [J].
Kao, Chiu-Yen ;
Santosa, Fadil .
WAVE MOTION, 2008, 45 (04) :412-427
[28]   Approximation in eigenvalue problems for holomorphic Fredholm operator functions .1. [J].
Karma, O .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (3-4) :365-387
[29]   Laser optics - Fractal modes in unstable resonators [J].
Karman, GP ;
McDonald, GS ;
New, GHC ;
Woerdman, JP .
NATURE, 1999, 402 (6758) :138-138
[30]  
Kato T., 1980, Perturbation Theory of Linear Operators