On spurious solutions in finite element approximations of resonances in open systems

被引:8
作者
Araujo-Cabarcas, Juan Carlos [1 ]
Engstrom, Christian [1 ]
机构
[1] Umea Univ, Dept Math & Math Stat, Umea, Sweden
基金
瑞典研究理事会;
关键词
Scattering resonances; Lippmann-Schwinger equation; Nonlinear eigenvalue problems; Acoustic resonator; Dielectric resonator; Bragg resonator; SPECTRAL APPROXIMATION; EIGENVALUE PROBLEMS; NUMERICAL-SOLUTION; SCATTERING RESONANCES; MODES;
D O I
10.1016/j.camwa.2017.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss problems arising when computing resonances with a finite element method. In the pre-asymptotic regime, we detect for the one dimensional case, spurious solutions in finite element computations of resonances when the computational domain is truncated with a perfectly matched layer (PML) as well as with a Dirichlet-to-Neumann map (DtN). The new test is based on the Lippmann-Schwinger equation and we use computations of the pseudospectrum to show that this is a suitable choice. Numerical simulations indicate that the presented test can distinguish between spurious eigenvalues and true eigenvalues also in difficult cases. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2385 / 2402
页数:18
相关论文
共 54 条
[1]  
Asakura J., 2009, JSIAM Let, V1, P52, DOI 10.14495/jsiaml.1.52
[2]  
Aslanyan A, 2000, NUMER MATH, V85, P525, DOI 10.1007/s002110000149
[3]  
Babuka I., 1991, Finite Element Methods (Part 1), Handbook of Numerical Analysis,, V2, P640
[4]   REGULARITY AND NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS WITH PIECEWISE ANALYTIC DATA [J].
BABUSKA, I ;
GUO, BQ ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1534-1560
[5]  
Balay S., 2015, Technical Report ANL-95/11-Revision 3.6
[6]  
Bandlow B., 2013, 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), P855, DOI 10.1109/ICEAA.2013.6632358
[7]  
Bangerth W., 2015, DEAL 2 LIB VERSION 8, V3
[8]   THE NUMERICAL-SOLUTION OF THE HELMHOLTZ-EQUATION FOR WAVE-PROPAGATION PROBLEMS IN UNDERWATER ACOUSTICS [J].
BAYLISS, A ;
GOLDSTEIN, CI ;
TURKEL, E .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (7-8) :655-665
[9]   An integral method for solving nonlinear eigenvalue problems [J].
Beyn, Wolf-Juergen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) :3839-3863
[10]  
Brenner S, 2002, TEXTS APPL MATH