Normal integral bases in quadratic and cyclic cubic extensions of quadratic fields

被引:10
作者
Carter, JE [1 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
关键词
D O I
10.1007/s00013-003-0821-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field and let G be a finite abelian group. We call K a Hilbert-Speiser field of type G if, and only if, every tamely ramified normal extension L/K with Galois group isomorphic to G has a normal integral basis. Now let C-2 and C-3 denote the cyclic groups of order 2 and 3, respectively. Firstly, we show that among all imaginary quadratic fields, there are exactly three Hilbert-Speiser fields of type C-2: Q(rootm), where m is an element of {- 1, -3, -7}. Secondly, we give some necessary and sufficient conditions for a real quadratic field K = Q(rootm) to be a Hilbert-Speiser field of type C-2. These conditions are in terms of the congruence class of m modulo 4 or 8, the fundamental unit of K, and the class number of K. Finally, we show that among all quadratic number fields, there are exactly eight Hilbert-Speiser fields of type C-3: Q(rootm), where m is an element of {- 11, -3, -2, 2, 5, 17, 41, 89}.
引用
收藏
页码:266 / 271
页数:6
相关论文
共 50 条
[21]   CONSTRUCTION OF INTEGRAL BASES IN ABELIAN FIELD-EXTENSIONS OF IMAGINARY QUADRATIC NUMBER-FIELDS [J].
BLEY, W .
JOURNAL OF NUMBER THEORY, 1994, 46 (03) :334-371
[22]   MONOGENIC CUBIC CYCLIC EXTENSIONS OF THE RING OF INTEGERS OF A QUADRATIC FIELD [J].
THEROND, JD .
ARCHIV DER MATHEMATIK, 1995, 64 (03) :216-229
[23]   On quadratic Ostrowski extensions of imaginary quadratic fields [J].
Razieh Naroui ;
Ali Rajaei .
The Ramanujan Journal, 2023, 62 :967-982
[24]   On quadratic Ostrowski extensions of imaginary quadratic fields [J].
Naroui, Razieh ;
Rajaei, Ali .
RAMANUJAN JOURNAL, 2023, 62 (04) :967-982
[25]   Embeddability of quadratic extensions in cyclic extensions [J].
Geyer, Wulf-Dieter ;
Jensen, Christian U. .
FORUM MATHEMATICUM, 2007, 19 (04) :707-725
[26]   ELLIPTIC UNITS OF CYCLIC UNRAMIFIED EXTENSIONS OF COMPLEX QUADRATIC FIELDS [J].
HAJIR, F .
ACTA ARITHMETICA, 1993, 64 (01) :69-85
[27]   THE CHARACTERIZATION OF CYCLIC CUBIC FIELDS WITH POWER INTEGRAL BASES [J].
Kashio, Tomokazu ;
Sekigawa, Ryutaro .
KODAI MATHEMATICAL JOURNAL, 2021, 44 (02) :290-306
[28]   INTEGRAL NORMAL BASES IN GALOIS EXTENSIONS OF LOCAL FIELDS [J].
ULLOM, S .
NAGOYA MATHEMATICAL JOURNAL, 1970, 39 :141-&
[29]   Cyclic cubic monogenic extensions of the whole algebraic numbers of a quadratic field [J].
Thérond, JD .
ARCHIV DER MATHEMATIK, 1999, 72 (03) :180-184