Role of Roots of Orthogonal Polynomials in the Dynamic Response of Stochastic Systems

被引:9
作者
Jacquelin, E. [1 ,2 ,3 ]
Adhikari, S. [4 ]
Friswell, M. I. [4 ]
Sinou, J. -J. [5 ,6 ]
机构
[1] Univ Lyon, F-69622 Lyon, France
[2] Univ Lyon 1, F-69100 Villeurbanne, France
[3] IFSTTAR, UMR T9406, LBMC, F-69675 Bron, France
[4] Swansea Univ, Coll Engn, Swansea SA2 8PP, W Glam, Wales
[5] Ecole Cent Lyon, CNRS, Lab Tribol & Syst Dynam LTDS, UMR 5513, F-69134 Ecully, France
[6] Inst Univ France, F-75005 Paris, France
关键词
Random dynamical systems; Polynomial chaos expansion; Steady-state response; Convergence; Roots of orthogonal polynomials; RANDOM EIGENVALUE PROBLEM;
D O I
10.1061/(ASCE)EM.1943-7889.0001102
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates the fundamental nature of the polynomial chaos (PC) response of dynamic systems with uncertain parameters in the frequency domain. The eigenfrequencies of the extended matrix arising from a PC formulation govern the convergence of the dynamic response. It is shown that, in the particular case of uncertainties and with Hermite and Legendre polynomials, the PC eigenfrequencies are related to the roots of the underlying polynomials, which belong to the polynomial chaos set used to derive the polynomial chaos expansion. When Legendre polynomials are used, the PC eigenfrequencies remain in a bounded interval close to the deterministic eigenfrequencies because they are related to the roots of a Legendre polynomial. The higher the PC order, the higher the density of the PC eigenfrequencies close to the bounds of the interval, and this tends to smooth the frequency response quickly. In contrast, when Hermite polynomials are used, the PC eigenfrequencies spread from the deterministic eigenfrequencies (the highest roots of the Hermite polynomials tend to infinity when the order tends to infinity). Consequently, when the PC number increases, the smoothing effect becomes inefficient.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 13 条
[1]   An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis [J].
Blatman, Geraud ;
Sudret, Bruno .
PROBABILISTIC ENGINEERING MECHANICS, 2010, 25 (02) :183-197
[2]   A method for the dynamical analysis of FE discretized uncertain structures in the frequency domain [J].
Falsone, G ;
Ferro, G .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (42-44) :4544-4564
[3]   A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters [J].
Falsone, G ;
Impollonia, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (44) :5067-5085
[4]  
Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
[5]   Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition [J].
Ghanem, Roger ;
Ghosh, Debrai .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (04) :486-504
[6]   Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences [J].
Jacquelin, E. ;
Adhikari, S. ;
Sinou, J. -J. ;
Friswell, M. I. .
JOURNAL OF SOUND AND VIBRATION, 2015, 356 :144-154
[7]   Polynomial Chaos Expansion and Steady-State Response of a Class of Random Dynamical Systems [J].
Jacquelin, E. ;
Adhikari, S. ;
Sinou, J. -J. ;
Friswell, M. I. .
JOURNAL OF ENGINEERING MECHANICS, 2015, 141 (04)
[8]   Dynamic analysis of stochastic structural systems using frequency adaptive spectral functions [J].
Kundu, A. ;
Adhikari, S. .
PROBABILISTIC ENGINEERING MECHANICS, 2015, 39 :23-38
[9]   Transient Response of Structural Dynamic Systems with Parametric Uncertainty [J].
Kundu, Abhishek ;
Adhikari, Sondipon .
JOURNAL OF ENGINEERING MECHANICS, 2014, 140 (02) :315-331
[10]   UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION [J].
Sepahvand, K. ;
Marburg, S. ;
Hardtke, H. -J. .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (02) :305-353