A gradient model for torsion of nanobeams

被引:11
作者
de Sciarra, Francesco Marotti [1 ]
Canadija, Marko [2 ]
Barretta, Raffaele [1 ]
机构
[1] Dept Struct Engn & Architecture, I-80121 Naples, Italy
[2] Univ Rijeka, Fac Engn, Dept Engn Mech, Rijeka 51000, Croatia
来源
COMPTES RENDUS MECANIQUE | 2015年 / 343卷 / 04期
关键词
Nanobeams; Size effects; Nonlocal thermodynamics; Nonlocal torsion; Analytical solutions; CARBON NANOTUBES; LENGTH SCALE; ELASTICITY; FORMULATIONS; PLASTICITY;
D O I
10.1016/j.crme.2015.02.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A first-order gradient model based on the Eringen nonlocal theory is presented. The variational formulation, the governing differential equation and both classical and non-classical boundary conditions of nonlocal nanobeams subjected to torsional loading distributions are derived using a thermodynamic approach, thus providing closed-form solutions. Nanocantilevers and fully campled nanobeams are considered to investigate the size-dependent static behavior of the proposed model in terms of torsional rotations and moments. The results are thus compared to those of the Eringen model, gradient elasticity theory and classical (local) model. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:289 / 300
页数:12
相关论文
共 39 条
[11]  
Canadija M, 2013, REV ADV MATER SCI, V33, P1
[12]   Variational formulations, convergence and stability properties in nonlocal elastoplasticity [J].
de Sciarra, Francesco Marotti .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (7-8) :2322-2354
[13]   A new nonlocal bending model for Euler-Bernoulli nanobeams [J].
de Sciarra, Francesco Marotti ;
Barretta, Raffaele .
MECHANICS RESEARCH COMMUNICATIONS, 2014, 62 :25-30
[14]   Finite element modelling of nonlocal beams [J].
de Sciarra, Francesco Marotti .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 59 :144-149
[15]   On non-local and non-homogeneous elastic continua [J].
de Sciarra, Francesco Marotti .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (3-4) :651-676
[17]  
Eringen AC., 2002, Nonlocal Continuum Field Theories
[18]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[19]   A modeling and analysis of spring-shaped torsion micromirrors for low-voltage applications [J].
Huang, JM ;
Liu, AQ ;
Deng, ZL ;
Zhang, QX .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2006, 48 (06) :650-661
[20]   A nonlinear strain gradient beam formulation [J].
Kahrobaiyan, M. H. ;
Asghari, M. ;
Rahaeifard, M. ;
Ahmadian, M. T. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (11) :1256-1267