Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage

被引:88
作者
Zhang, Qiuyu [1 ]
Huang, Yike [2 ]
Ma, Tiancai [3 ]
Li, Ke [1 ]
Ye, Fei [1 ]
Wang, Xuechao [1 ]
Jiao, Lifang [2 ]
Yuan, Huatang [2 ]
Wang, Yijing [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Water Affairs Res Inst, Zhengzhou 450000, Peoples R China
[2] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr ReCast, Key Lab Adv Energy Mat Chem MOE, Tianjin 300071, Peoples R China
[3] Tongji Univ, Coll Automot Engn, Shanghai 200092, Peoples R China
基金
国家重点研发计划;
关键词
Mg-based composites; In situ synthesis; Hydrogenation/dehydrogenation performance; Carbon materials; MAGNESIUM HYDRIDE; DESORPTION PROPERTIES; SORPTION KINETICS; NANOCOMPOSITES; NANOTUBES; CATALYST;
D O I
10.1016/j.jallcom.2020.153953
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a facile chemical solid state method to in situ grow MgH2 nanoparticles in various carbon materials. Commercial carbon materials, containing coconut shell charcoal (CSC), multi-walled carbon nanotube (CNT), graphite (G) and activated carbon (AC) are employed as the templates. The MgH2@X (X = CSC, CNT, G and AC) composites were successfully obtained by the simple solid state method. The hydrogen storage properties of MgH2@X (X = CSC, CNT, G and AC) composites are systematically studied by temperature-programmed desorption system, isothermal de/hydrogenation apparatus and differential scanning calorimetry measurements. Experimental results reveal that the MgH2@CSC composites have the most fascinating hydrogen absorption and desorption performance, followed by MgH2@CNT, MgH2@G and MgH2@AC composites. The dehydrogenation of MgH2@CSC composites begins at 245 degrees C. Moreover, the MgH2@CSC composites exhibit superior de/hydrogenation kinetic performance. The composites could desorb 5.4 wt% hydrogen within 10 min at 325 degrees C, and the dehydrogenated composites take up 5.0 wt% hydrogen within 5 min at 250 degrees C under 2 MPa H-2 pressure. Among the carbon materials, CSC with layered structure composed of interconnected wrinkles is most beneficial to maintain the high dispersity and nano size of MgH2 nanoparticles, resulting in the superior de/hydrogenation performance. (C) 2020 Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 46 条
[21]   Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method [J].
Liu, Wei ;
Aguey-Zinsou, Kondo-Francois .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (25) :9718-9726
[22]   Hydrogen Storage Properties of a Mg-Ni Nanocomposite Coprecipitated from Solution [J].
Liu, Yana ;
Zou, Jianxin ;
Zeng, Xiaoqin ;
Wu, Xiaomei ;
Li, Dejiang ;
Ding, Wenjiang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (32) :18401-18411
[23]   Study on hydrogen storage properties of Mg nanoparticles confined in carbon aerogels [J].
Liu, Yana ;
Zou, Jianxin ;
Zeng, Xiaoqin ;
Wu, Xiaomei ;
Tian, Huyong ;
Ding, Wenjiang ;
Wang, Jun ;
Walter, Anastasia .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (13) :5302-5308
[24]   Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride [J].
Liu, Yongfeng ;
Du, Hufei ;
Zhang, Xin ;
Yang, Yaxiong ;
Gao, Mingxia ;
Pan, Hongge .
CHEMICAL COMMUNICATIONS, 2016, 52 (04) :705-708
[25]   An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance [J].
Lotoskyy, Mykhaylo ;
Denys, Roman ;
Yartys, Volodymyr A. ;
Eriksen, Jon ;
Goh, Jonathan ;
Nyamsi, Serge Nyallang ;
Sita, Cordellia ;
Cummings, Franscious .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (23) :10740-10754
[26]   Magnesium-carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen [J].
Lototskyy, M. ;
Sibanyoni, J. M. ;
Denys, R. V. ;
Williams, M. ;
Pollet, B. G. ;
Yartys, V. A. .
CARBON, 2013, 57 :146-160
[27]   Prediction of superconducting ternary hydride MgGeH6: from divergent high-pressure formation routes [J].
Ma, Yanbin ;
Duan, Defang ;
Shao, Ziji ;
Li, Da ;
Wang, Liyuan ;
Yu, Hongyu ;
Tian, Fubo ;
Xie, Hui ;
Liu, Bingbing ;
Cui, Tian .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (40) :27406-27412
[28]   Size-Dependent Hydrogen Storage Properties of Mg Nanocrystals Prepared from Solution [J].
Norberg, Nick S. ;
Arthur, Timothy S. ;
Fredrick, Sarah J. ;
Prieto, Amy L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (28) :10679-10681
[29]   Nanoconfinement of Mg6Pd particles in porous carbon: size effects on structural and hydrogenation properties [J].
Ponthieu, M. ;
Au, Y. S. ;
Provost, K. ;
Zlotea, C. ;
Leroy, E. ;
Fernandez, J. F. ;
Latroche, M. ;
de Jongh, P. E. ;
Cuevas, F. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) :18444-18453
[30]   MgH2 with different morphologies synthesized by thermal hydrogenolysis method for enhanced hydrogen sorption [J].
Setijadi, Eki J. ;
Boyer, Cyrille ;
Aguey-Zinsou, Kondo-Francois .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) :5746-5757