Thermal and Entropy generation analysis of magnetohydrodynamic tangent hyperbolic slip flow towards a stretching sheet

被引:15
作者
Ahmad, Shafiq [1 ]
Khan, Zafar H. [2 ]
Zeb, Salman [1 ]
Hamid, Muhammad [3 ,4 ]
机构
[1] Univ Malakand, Dept Math, Chakdara, Pakistan
[2] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Coll Water Resource & Hydropower, Chengdu 610065, Peoples R China
[3] Fudan Univ, Dept Mech & Engn Sci, Shanghai 200433, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
基金
中国博士后科学基金;
关键词
Tangent hyperbolic fluid; variable thermal conductivity; entropy generation; non-similar transformation; BOUNDARY-LAYER-FLOW; NON-NEWTONIAN FLUID; HEAT-TRANSFER; VISCOUS DISSIPATION; NANOFLUID FLOW; RADIATION; PLATE;
D O I
10.1177/09544089211041188
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This article examined the effects of boundary layer flow and heat transport of a two-dimensional incompressible magnetohydrodynamic tangent hyperbolic fluid under slip boundary conditions and variable thermal conductivity. The entropy generation model is also analysed for the said fluid. Non-similarity transformations transformed the governing equations of the fluid and entropy generation model into dimensionless form. Maple software is used to solve the transformed equations numerically. Effects of different dimensionless parameters on entropy generation rate, Bejan number, velocity and temperature fields are studied thoroughly through graphs. It is observed that for higher values of velocity slip parameter and power-law index, the entropy generation rate decreases while the Bejan number increases. Also, for the Hartmann number, Weissenberg number and Brinkman number, we found an increase in the entropy generation rate, and reverse behaviour is observed for the Bejan number. Nusselt number, temperature profile and Bejan's number increase with an increase in variable thermal conductivity.
引用
收藏
页码:357 / 367
页数:11
相关论文
共 38 条
[21]   Peristaltic Transport of a Hyperbolic Tangent Fluid Model in an Asymmetric Channel [J].
Nadeem, Sohail ;
Akram, Safia .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (9-10) :559-567
[22]   The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder [J].
Naseer, Muhammad ;
Malik, Muhammad Yousaf ;
Nadeem, Sohail ;
Rehman, Abdul .
ALEXANDRIA ENGINEERING JOURNAL, 2014, 53 (03) :747-750
[23]   Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet [J].
Nazar, R ;
Amin, N ;
Filip, D ;
Pop, I .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2004, 42 (11-12) :1241-1253
[24]   Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface [J].
Partha, MK ;
Murthy, PVSN ;
Rajasekhar, GP .
HEAT AND MASS TRANSFER, 2005, 41 (04) :360-366
[25]  
Pop I., 2001, CONVECTIVE HEAT TRAN
[26]  
Prasad VR, 2016, J APPL FLUID MECH, V9, P1667
[27]  
Rao AS, 2016, J APPL FLUID MECH, V9, P795
[28]   Zero-mass flux and Cattaneo-Christov heat flux through a Prandtl non-Newtonian nanofluid in Darcy-Forchheimer porous space [J].
Reddy, M. G. ;
Vijayakumari, P. ;
Kumar, K. G. ;
Shehzad, S. A. .
HEAT TRANSFER, 2021, 50 (01) :220-233
[29]   A potential alternative CFD simulation for steady Carreau-Bird law-based shear thickening model: Part-I [J].
Rehman, Khalil Ur ;
Malik, M. Y. ;
Mahmood, R. ;
Kousar, N. ;
Zehra, Iffat .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (04)
[30]   Thermo-physical aspects in tangent hyperbolic fluid flow regime: A short communication [J].
Rehman, Khalil Ur ;
Alshomrani, Ali Saleh ;
Malik, M. Y. ;
Zehra, Iffat ;
Naseer, Muhammad .
CASE STUDIES IN THERMAL ENGINEERING, 2018, 12 :203-212