Minimum time optimal synthesis for two level quantum systems

被引:24
作者
Albertini, Francesca [1 ]
D'Alessandro, Domenico [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, Padua, Italy
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
D O I
10.1063/1.4906137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the time optimal problem of an invariant system on SU(2), with two independent controls and a bound on the norm of the control, the extremals of the Pontryagin maximum principle are explicit functions of time. We use this fact here to perform the optimal synthesis for these systems, i.e., to find all time optimal trajectories. Although the Lie group SU(2) is three dimensional, time optimal trajectories can be described in the unit disk of the complex plane. We find that a circular trajectory separates optimal trajectories that reach the boundary of the unit disk from the others. Inside this separatrix circle, another trajectory (the critical trajectory) plays an important role in that all optimal trajectories end at an intersection with this curve. The results allow us to find the minimum time needed to achieve a given evolution of a two level quantum system. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:28
相关论文
共 23 条
[1]   Guest Editorial: Special Issue on Control of Quantum Mechanical Systems [J].
Altafini, Claudio ;
Bloch, Anthony M. ;
James, Matthew R. ;
Loria, Antonio ;
Rouchon, Pierre .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1893-1895
[2]   Time-optimal synthesis of SU(2) transformations for a spin-1/2 system [J].
Boozer, A. D. .
PHYSICAL REVIEW A, 2012, 85 (01)
[3]   On the K+P problem for a three-level quantum system:: Optimality implies resonance [J].
Boscain, U ;
Chambrion, T ;
Gauthier, JP .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2002, 8 (04) :547-572
[4]   Time minimal trajectories for a spin 1/2 particle in a magnetic field [J].
Boscain, Ugo ;
Mason, Paolo .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
[5]   Minimal time trajectories for two-level quantum systems with two bounded controls [J].
Boscain, Ugo ;
Gronberg, Fredrik ;
Long, Ruixing ;
Rabitz, Herschel .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)
[6]   Time-optimal quantum evolution - art. no. 060503 [J].
Carlini, A ;
Hosoya, A ;
Koike, T ;
Okudaira, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)
[7]   Time-optimal unitary operations [J].
Carlini, Alberto ;
Hosoya, Akio ;
Koike, Tatsuhiko ;
Okudaira, Yosuke .
PHYSICAL REVIEW A, 2007, 75 (04)
[8]  
Cohen-Tannoudji Claude, 2019, Angular Momentum, Spin, and Approximation Methods, V2
[9]  
dAlessandro D., 2007, Introduction to Quantum Control and Dynam-ics
[10]   Controlling Spin Qubits in Quantum Dots [J].
Engel, Hans-Andreas ;
Kouwenhoven, L. P. ;
Loss, Daniel ;
Marcus, C. M. .
QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) :115-132