Selective gene silencing by viral delivery of short hairpin RNA

被引:69
作者
Sliva, Katja [1 ]
Schnierle, Barbara S. [1 ]
机构
[1] Paul Ehrlich Inst, D-63225 Langen, Germany
关键词
REPLICATION-COMPETENT RETROVIRUS; ADENOASSOCIATED VIRUS VECTORS; SMALL INTERFERING RNA; IN-VIVO; LENTIVIRAL VECTORS; MAMMALIAN-CELLS; COLORECTAL-CANCER; BACULOVIRUS VECTOR; LIVER METASTASES; SHRNA LIBRARIES;
D O I
10.1186/1743-422X-7-248
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells.
引用
收藏
页数:11
相关论文
共 130 条
[1]   Mutations in PCSK9 cause autosomal dominant hypercholesterolemia [J].
Abifadel, M ;
Varret, M ;
Rabès, JP ;
Allard, D ;
Ouguerram, K ;
Devillers, M ;
Cruaud, C ;
Benjannet, S ;
Wickham, L ;
Erlich, D ;
Derré, A ;
Villéger, L ;
Farnier, M ;
Beucler, I ;
Bruckert, E ;
Chambaz, J ;
Chanu, B ;
Lecerf, JM ;
Luc, G ;
Moulin, P ;
Weissenbach, J ;
Prat, A ;
Krempf, M ;
Junien, C ;
Seidah, NG ;
Boileau, C .
NATURE GENETICS, 2003, 34 (02) :154-156
[2]   Optimized production and concentration of lentiviral vectors containing large inserts [J].
Al Yacoub, Nadya ;
Romanowska, Malgorzata ;
Haritonova, Natalie ;
Foerster, John .
JOURNAL OF GENE MEDICINE, 2007, 9 (07) :579-584
[3]   In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour [J].
Bahi, A ;
Boyer, F ;
Kolira, M ;
Dreyer, JL .
JOURNAL OF NEUROCHEMISTRY, 2005, 92 (05) :1243-1255
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing [J].
Bartlett, Derek W. ;
Davis, Mark E. .
BIOTECHNOLOGY AND BIOENGINEERING, 2007, 97 (04) :909-921
[6]   Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging [J].
Bartlett, DW ;
Davis, ME .
NUCLEIC ACIDS RESEARCH, 2006, 34 (01) :322-333
[7]  
Bell J. C., 2002, Current Gene Therapy, V2, P243, DOI 10.2174/1566523024605582
[8]   A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J].
Berns, K ;
Hijmans, EM ;
Mullenders, J ;
Brummelkamp, TR ;
Velds, A ;
Heimerikx, M ;
Kerkhoven, RM ;
Madiredjo, M ;
Nijkamp, W ;
Weigelt, B ;
Agami, R ;
Ge, W ;
Cavet, G ;
Linsley, PS ;
Beijersbergen, RL ;
Bernards, R .
NATURE, 2004, 428 (6981) :431-437
[9]   Inhibition of respiratory viruses by nasally administered siRNA [J].
Bitko, V ;
Musiyenko, A ;
Shulyayeva, O ;
Barik, S .
NATURE MEDICINE, 2005, 11 (01) :50-55
[10]   Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins [J].
Boden, D ;
Pusch, O ;
Silbermann, R ;
Lee, F ;
Tucker, L ;
Ramratnam, B .
NUCLEIC ACIDS RESEARCH, 2004, 32 (03) :1154-1158