Stochastic flows associated to coalescent processes II: Stochastic differential equations

被引:32
作者
Bertoin, J
Le Gall, JF
机构
[1] Ecole Normale Super, DMA, F-75005 Paris, France
[2] Univ Paris 06, Lab Probabilt & Modeles Aleatoires, F-75013 Paris, France
[3] Univ Paris 06, Inst Univ France, F-75013 Paris, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2005年 / 41卷 / 03期
关键词
flow; coalescence; bridge; stochastic differential equation;
D O I
10.1016/j.anihpb.2004.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain precise information about the stochastic flows of bridges that are associated with the so-called Lambda-coalescents. When the measure Lambda gives no mass to 0, we prove that the flow of bridges is generated by a stochastic differential equation driven by a Poisson point process. On the other hand, the case Lambda = delta(0) of the Kingman coalescent gives rise to a flow of coalescing diffusions on the interval [0, 1]. We also discuss a remarkable Brownian flow on the circle which has close connections with the Kingman coalescent. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:307 / 333
页数:27
相关论文
共 14 条
[1]   Stochastic flows associated to coalescent processes [J].
Bertoin, J ;
Le Gall, JF .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) :261-288
[2]  
ETHERIDGE A.M., 2000, U LECT SER, V20
[3]  
Ethier S.N., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658
[4]   COALESCING AND NONCOALESCING STOCHASTIC FLOWS IN R1 [J].
HARRIS, TE .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 17 (02) :187-210
[5]  
Jacod J., 1979, Calcul stochastique et problemes de martingales
[6]   CANONICAL REPRESENTATIONS AND CONVERGENCE CRITERIA FOR PROCESSES WITH INTERCHANGEABLE INCREMENTS [J].
KALLENBERG, O .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 27 (01) :23-36
[7]  
Karatzas I., 1997, BROWNIAN MOTION STOC
[8]  
Kingman JFC., 1982, Stochastic Processes and their Applications, V13, P235, DOI [10.1016/0304-4149(82)90011-4, DOI 10.1016/0304-4149(82)90011-4]
[9]   Flows, coalescence and noise [J].
Le Jan, Y ;
Raimond, O .
ANNALS OF PROBABILITY, 2004, 32 (02) :1247-1315
[10]  
Meyer PA, 1976, LECT NOTES MATH, V511