Construction of the ef-based Runge-Kutta methods revisited

被引:33
作者
D'Ambrosio, R. [1 ]
Ixaru, L. Gr. [2 ,3 ]
Paternoster, B. [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, Italy
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania
[3] Acad Romanian Scientists, Bucharest 050094, Romania
关键词
Ordinary differential equations; Runge-Kutta methods; Exponential fitting; NYSTROM METHODS;
D O I
10.1016/j.cpc.2010.10.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this paper is to revisit the exponential fitting (ef) technique when building up Runge-Kutta methods for solving ordinary differential equations. We propose a modification in such a way that the contamination of the final stage by the errors produced in the internal stages becomes visible. The modified technique is illustrated on a simple version, namely the two-stage explicit Runge-Kutta method, for which we obtain new expressions for the coefficients. The version obtained in this way is then compared for accuracy and stability with that obtained by means of the standard ef technique. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 329
页数:8
相关论文
共 50 条
[41]   ON THE PRESERVATION OF SECOND INTEGRALS BY RUNGE-KUTTA METHODS [J].
Tapley, Benjamin K. .
JOURNAL OF COMPUTATIONAL DYNAMICS, 2023, 10 (02) :304-322
[42]   Runge-Kutta methods for Fuzzy Differential Equations [J].
Palligkinis, S. Ch. ;
Papageorgiou, G. ;
Famelis, I. Th. .
Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B :444-448
[43]   Exponential Runge-Kutta methods for the Schrodinger equation [J].
Dujardin, Guillaume .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (08) :1839-1857
[44]   Generalizations of the Stage Order of Runge-Kutta Methods [J].
Skvortsov, L. M. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (12) :2796-2812
[45]   Effective Order of Partitioned Runge-Kutta Methods [J].
Ahmad, Junaid ;
Habib, Yousaf ;
Shafiq, Saba ;
Rehman, Shafiq Ur .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (01) :79-98
[46]   On the Preservation of Lyapunov Functions by Runge-Kutta Methods [J].
Calvo, M. ;
Laburta, M. P. ;
Montijano, J. I. ;
Randez, L. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 :735-738
[47]   Dissipativity of Runge-Kutta methods in Hilbert spaces [J].
Adrian T. Hill .
BIT Numerical Mathematics, 1997, 37 :37-42
[48]   Functionally Fitted Runge-Kutta Methods: A Survey [J].
Ozawa, Kazufumi .
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2009, 12 (05) :949-962
[49]   Parallelization of Runge-Kutta Methods for Hardware Implementation [J].
Fedoseev, Petr ;
Zhukov, Konstantin ;
Kaplun, Dmitry ;
Vybornov, Nikita ;
Andreev, Valery .
COMPUTATION, 2022, 10 (12)
[50]   ENERGY-PRESERVING RUNGE-KUTTA METHODS [J].
Celledoni, Elena ;
McLachlan, Robert I. ;
McLaren, David I. ;
Owren, Brynjulf ;
Quispel, G. Reinout W. ;
Wright, William M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04) :645-649