Construction of the ef-based Runge-Kutta methods revisited

被引:33
作者
D'Ambrosio, R. [1 ]
Ixaru, L. Gr. [2 ,3 ]
Paternoster, B. [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, Italy
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania
[3] Acad Romanian Scientists, Bucharest 050094, Romania
关键词
Ordinary differential equations; Runge-Kutta methods; Exponential fitting; NYSTROM METHODS;
D O I
10.1016/j.cpc.2010.10.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this paper is to revisit the exponential fitting (ef) technique when building up Runge-Kutta methods for solving ordinary differential equations. We propose a modification in such a way that the contamination of the final stage by the errors produced in the internal stages becomes visible. The modified technique is illustrated on a simple version, namely the two-stage explicit Runge-Kutta method, for which we obtain new expressions for the coefficients. The version obtained in this way is then compared for accuracy and stability with that obtained by means of the standard ef technique. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 329
页数:8
相关论文
共 50 条
[31]   On error growth functions of Runge-Kutta methods [J].
Hairer, E ;
Zennaro, M .
APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) :205-216
[32]   Variational formulations for explicit Runge-Kutta Methods [J].
Munoz-Matute, Judit ;
Pardo, David ;
Calo, Victor M. ;
Alberdi, Elisabete .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2019, 165 :77-93
[33]   Dissipativity of Runge-Kutta methods in Hilbert spaces [J].
Hill, AT .
BIT NUMERICAL MATHEMATICS, 1997, 37 (01) :37-42
[34]   Relaxation Runge-Kutta Methods for Hamiltonian Problems [J].
Ranocha, Hendrik ;
Ketcheson, David I. .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
[35]   Runge-Kutta methods with minimum storage implementations [J].
Ketcheson, David I. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (05) :1763-1773
[36]   Performance analysis of relaxation Runge-Kutta methods [J].
Rogowski, Marcin ;
Dalcin, Lisandro ;
Parsani, Matteo ;
Keyes, David E. .
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2022, 36 (04) :524-542
[37]   Conditions for Trigonometrically Fitted Runge-Kutta Methods [J].
Kalogiratou, Z. ;
Monovasilis, Th. ;
Simos, T. E. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 :1600-+
[38]   Synthesis and design of passive Runge-Kutta methods [J].
Fränken, D ;
Ochs, K .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2001, 55 (06) :417-425
[39]   Estimating the error in the classical Runge-Kutta methods [J].
S. I. Khashin .
Computational Mathematics and Mathematical Physics, 2014, 54 :767-774
[40]   Continuous Extensions for Structural Runge-Kutta Methods [J].
Eremin, Alexey S. ;
Kovrizhnykh, Nikolai A. .
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT II, 2017, 10405 :363-378