Construction of the ef-based Runge-Kutta methods revisited

被引:33
作者
D'Ambrosio, R. [1 ]
Ixaru, L. Gr. [2 ,3 ]
Paternoster, B. [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, Italy
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania
[3] Acad Romanian Scientists, Bucharest 050094, Romania
关键词
Ordinary differential equations; Runge-Kutta methods; Exponential fitting; NYSTROM METHODS;
D O I
10.1016/j.cpc.2010.10.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this paper is to revisit the exponential fitting (ef) technique when building up Runge-Kutta methods for solving ordinary differential equations. We propose a modification in such a way that the contamination of the final stage by the errors produced in the internal stages becomes visible. The modified technique is illustrated on a simple version, namely the two-stage explicit Runge-Kutta method, for which we obtain new expressions for the coefficients. The version obtained in this way is then compared for accuracy and stability with that obtained by means of the standard ef technique. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 329
页数:8
相关论文
共 50 条
[21]   Structure preservation of exponentially fitted Runge-Kutta methods [J].
Calvo, M. ;
Franco, J. M. ;
Montijano, J. I. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) :421-434
[22]   An Approach Problem for Control Systems Based on Runge-Kutta Methods [J].
Cui, Yan ;
Yu, Yang ;
Liu, Yanshan ;
Hao, Xinran ;
Gao, Hongwei .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (09) :1991-2004
[23]   Semantic Segmentation of Medical Images Based on Runge-Kutta Methods [J].
Zhu, Mai ;
Fu, Chong ;
Wang, Xingwei .
BIOENGINEERING-BASEL, 2023, 10 (05)
[24]   Runge-Kutta methods adapted to manifolds and based on rigid frames [J].
Owren, B ;
Marthinsen, A .
BIT, 1999, 39 (01) :116-142
[25]   Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames [J].
B. Owren ;
A. Marthinsen .
BIT Numerical Mathematics, 1999, 39 :116-142
[26]   Runge-Kutta methods: Some historical notes [J].
Butcher, JC ;
Wanner, G .
APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) :113-151
[27]   Estimating the error in the classical Runge-Kutta methods [J].
Khashin, S. I. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (05) :767-774
[28]   Continuous approximation with embedded Runge-Kutta methods [J].
Baker, TS ;
Dormand, JR ;
Gilmore, JP ;
Prince, PJ .
APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) :51-62
[29]   Runge-Kutta methods for fuzzy differential equations [J].
Palligkinis, S. Ch. ;
Papageorgiou, G. ;
Famelis, I. Th. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) :97-105
[30]   On the multisymplecticity of partitioned Runge-Kutta and splitting methods [J].
Ryland, Brett N. ;
Mclachlan, Robert I. ;
Frank, Jason .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (06) :847-869