Construction of the ef-based Runge-Kutta methods revisited

被引:33
作者
D'Ambrosio, R. [1 ]
Ixaru, L. Gr. [2 ,3 ]
Paternoster, B. [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, Italy
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania
[3] Acad Romanian Scientists, Bucharest 050094, Romania
关键词
Ordinary differential equations; Runge-Kutta methods; Exponential fitting; NYSTROM METHODS;
D O I
10.1016/j.cpc.2010.10.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this paper is to revisit the exponential fitting (ef) technique when building up Runge-Kutta methods for solving ordinary differential equations. We propose a modification in such a way that the contamination of the final stage by the errors produced in the internal stages becomes visible. The modified technique is illustrated on a simple version, namely the two-stage explicit Runge-Kutta method, for which we obtain new expressions for the coefficients. The version obtained in this way is then compared for accuracy and stability with that obtained by means of the standard ef technique. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 329
页数:8
相关论文
共 10 条
[1]  
[Anonymous], 2008, Numerical Methods for Ordinary Differential Equations
[2]   P-stability and exponential-fitting methods for y''=f(x, y) [J].
Coleman, JP ;
Ixaru, LG .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1996, 16 (02) :179-199
[3]   Exponentially fitted explicit Runge-Kutta-Nystrom methods [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 167 (01) :1-19
[4]  
Ixaru L.Gr., 2004, Exponential Fitting. Kluwer Academic Publishers
[5]   Operations on oscillatory functions [J].
Ixaru, LG .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 105 (01) :1-19
[6]  
Lambert J. D., 1991, NUMERICAL METHODS OR
[7]   An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions [J].
Simos, TE .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 115 (01) :1-8
[8]   On the generation of P-stable exponentially fitted Runge-Kutta-Nystrom methods by exponentially fitted Runge-Kutta methods [J].
Van de Vyver, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 188 (02) :309-318
[9]   Exponentially-fitted explicit Runge-Kutta methods [J].
Vanden Berghe, G ;
De Meyer, H ;
Van Daele, M ;
Van Hecke, T .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) :7-15
[10]  
Vanden Berghe G, 2000, J COMPUT APPL MATH, V125, P107, DOI 10.1016/S0377-0427(00)00462-3