MNN and LSTM-based Real-time State of Charge Estimation of Lithium-ion Batteries using a Vehicle Driving Simulator

被引:0
|
作者
Kim, Si Jin [1 ]
Lee, Jong Hyun [1 ]
Wang, Dong Hun [1 ]
Lee, In Soo [1 ]
机构
[1] Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 41566, South Korea
关键词
Lithium-ion battery; state of charge; multilayer neural network; long short-term memory; vehicle driving simulator; real time;
D O I
10.14569/IJACSA.2021.0120808
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Lithium-ion batteries (a type of secondary battery) are now used as a power source in many applications due to their high energy density, low self-discharge rates, and ability to store long-term energy. However, overcharging is inevitable due to frequent charging and discharging of these batteries. This may result in property damage caused by system shutdown, accident, or explosion. Therefore, reliable and efficient use requires accurate prediction of the battery state of charge (SOC). In this paper, a method of estimating SOC using vehicle simulator operation is proposed. After manufacturing the simulator for the battery discharge experiment, voltage, current, and dischargetime data were collected. The collected data was used as input parameters for multilayer neural network (MNN) and recurrent neural network-based long short-term memory (LSTM) to predict SOC of batteries and compare errors. In addition, discharge experiments and SOC estimates were performed in real time using the developed MNN and LSTM surrogate models.
引用
收藏
页码:60 / 67
页数:8
相关论文
共 50 条
  • [11] A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM
    Ren, Xiaoqing
    Liu, Shulin
    Yu, Xiaodong
    Dong, Xia
    ENERGY, 2021, 234
  • [12] A State-of-Charge Estimation Method based on Bidirectional LSTM Networks for Lithium-ion Batteries
    Zhang, Zhen
    Xu, Ming
    Ma, Longhua
    Yu, Binchao
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 211 - 216
  • [13] State of Charge Estimation for Lithium-Ion Batteries Based on TCN-LSTM Neural Networks
    Hu, Chunsheng
    Cheng, Fangjuan
    Ma, Liang
    Li, Bohao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [14] Real-time State of Charge Estimation of Electrochemical Model for Lithium-ion Battery
    Fan, Chuanxin
    Higgins, Matthew D.
    Widanage, Widanalage D.
    2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2019,
  • [15] Real-Time State-of-Charge Simulation and Dynamic Optimization of Lithium-Ion Batteries
    Boovaragavan, Vijayasekaran
    ELECTROCHEMICAL SOCIETY INTERFACE, 2007, 16 (04): : 54 - 55
  • [16] An LSTM-Based Approach For Capacity Estimation on Lithium-ion Battery
    Cao, Mengda
    Zhang, Yajun
    Hui, Jianjiang
    Liu, Yajie
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 494 - 499
  • [17] Joint Estimation of State of Charge and Capacity of Lithium-ion Batteries in Electric Vehicle
    Wang, Yuehui
    Wei, Tao
    Huang, Denggao
    Wang, Xu
    Zhu, Zhongwen
    Li, Cheng
    Jin, Peng
    Zhao, Jing
    Zhou, Lian
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1597 - 1604
  • [18] State of charge estimation for electric vehicle lithium-ion batteries based on model parameter adaptation
    Xing, Likun
    Zhang, Menglong
    Lu, Yunfan
    Guo, Min
    Ling, Liuyi
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2022, 15 (04) : 300 - 312
  • [19] Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance
    Tan, Xiaojun
    Tan, Yuqing
    Zhan, Di
    Yu, Ze
    Fan, Yuqian
    Qiu, Jianzhi
    Li, Jun
    IEEE ACCESS, 2020, 8 : 56811 - 56822
  • [20] Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance
    Tan, Xiaojun
    Tan, Yuqing
    Zhan, Di
    Yu, Ze
    Fan, Yuqian
    Qiu, Jianzhi
    Li, Jun
    IEEE Access, 2020, 8 : 56811 - 56822