High-Performance and Ultralow-Noise Two-Dimensional Heterostructure Field-Effect Transistors with One-Dimensional Electrical Contacts

被引:3
|
作者
Behera, Aroop K. [1 ]
Harris, Charles Thomas [2 ,3 ]
Pete, Douglas, V [2 ,3 ]
Delker, Collin J. [3 ]
Vullum, Per Erik [4 ]
Muniz, Marta B. [5 ,6 ]
Koybasi, Ozhan [7 ]
Taniguchi, Takashi [8 ]
Watanabe, Kenji [9 ]
Belle, Branson D. [5 ]
Das, Suprem R. [1 ,10 ]
机构
[1] Kansas State Univ, Dept Ind & Mfg Syst Engn, Manhattan, KS 66506 USA
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA
[3] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[4] SINTEF, Dept Mat & Nanotechnol, NO-7034 Trondheim, Norway
[5] SINTEF, Dept Sustainable Energy Technol, N-0373 Oslo, Norway
[6] Ecole Polytech Fed Lausanne EPFL, Inst Phys Matiere Complexe, CH-1015 Lausanne, Switzerland
[7] SINTEF DIGITAL, Dept Microsyst & Nanotechnol, N-0373 Oslo, Norway
[8] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[9] Natl Inst Mat Sci, Res Ctr Funct Mat, Tsukuba, Ibaraki 3050044, Japan
[10] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
hBN-graphene-hBN heterostructure FET; edge-contacted FET; remote interfacial phonon; 1/f noise; high-mobility FET; 1/F NOISE; GRAPHENE; TRANSPORT; SINGLE;
D O I
10.1021/acsaelm.1c00595
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Two-dimensional heterostructure field-effect transistors (2D-HFETs) with one-dimensional electrical contacts to atomically thin channels have recently shown great device performance, such as reduced contact resistance, leading to ballistic transport and enhanced carrier mobility. While a number of low-frequency noise studies exists on bare graphene devices supported on silicon dioxide gate insulators with surface contacts, such studies in heterostructure devices comprising epitaxial graphene on hexagonal boron nitride (hBN) with edge contacts are extremely limited. In this article, we present a systematic, temperature-dependent study of electrical transport and lowfrequency noise in edge-contacted high-mobility HFET with a single atomic-layer graphene channel encapsulated by hBN and demonstrate ultralow noise with a Hooge parameter of approximate to 10(-5). By combining measurements and modeling based on underlying microscopic scattering mechanisms caused by charge carriers and phonons, we directly correlate the high-performance, temperature-dependent transport behavior of this device with the noise characteristics. Our study provides a pathway towards engineering lownoise graphene-based high-performance 2D-FETs with one-dimensional edge contacts for applications such as digital electronics and chemical/biological sensing.
引用
收藏
页码:4126 / 4134
页数:9
相关论文
共 50 条
  • [21] Lateral Heterostructure Field-Effect Transistors Based on Two-Dimensional Material Stacks with Varying Thickness and Energy Filtering Source
    Marin, Enrique G.
    Marian, Damiano
    Perucchini, Marta
    Fiori, Gianluca
    Iannaccone, Giuseppe
    ACS NANO, 2020, 14 (02) : 1982 - 1989
  • [22] Toward High-Performance p-Type Two-Dimensional Field Effect Transistors: Contact Engineering, Scaling, and Doping
    Oberoi, Aaryan
    Han, Ying
    Stepanoff, Sergei P.
    Pannone, Andrew
    Sun, Yongwen
    Lin, Yu-Chuan
    Chen, Chen
    Shallenberger, Jeffrey R.
    Zhou, Da
    Terrones, Mauricio
    Redwing, Joan M.
    Robinson, Joshua A.
    Wolfe, Douglas E.
    Yang, Yang
    Das, Saptarshi
    ACS NANO, 2023, 17 (20) : 19709 - 19723
  • [23] Design strategy of two-dimensional material field-effect transistors: Engineering the number of layers in phosphorene FETs
    Yin, Demin
    Yoon, Youngki
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (21)
  • [24] Contact optimisation strategy for wafer-scale field-effect transistors based on two-dimensional semiconductors
    Tong, Ling
    Guo, Xiaojiao
    Shen, Zhangfeng
    Zhou, Lihui
    Ma, Jingyi
    Chen, Xinyu
    Chen, Honglei
    Xia, Yin
    Sheng, Chuming
    Gou, Saifei
    Wang, Die
    Wang, Xinyu
    Dong, Xiangqi
    Zhu, Yuxuan
    Zhang, Xinzhi
    Zhang, David Wei
    Dai, Sheng
    Li, Xi
    Zhou, Peng
    Wang, Yangang
    Bao, Wenzhong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 133 (230-237): : 230 - 237
  • [25] High field-effect performance and intrinsic scattering in the two-dimensional MoS2 semiconductors
    Tu, Hao-Wei
    Shih, Che-Chi
    Lin, Chin-Lung
    Yu, Meng-Zhe
    Lai, Jian-Jhong
    Luo, Ji-Chang
    Lin, Geng-Li
    Jian, Wen-Bin
    Watanabe, Kenji
    Taniguchi, Takashi
    Hu, Chenming
    APPLIED SURFACE SCIENCE, 2021, 564
  • [26] Soft template-assisted self-assembly: a general strategy toward two-dimensional molecular crystals for high-performance organic field-effect transistors
    Tian, Xinzi
    Yao, Jiarong
    Guo, Siyu
    Wang, Zhaofeng
    Xiao, Yanling
    Zhang, Heng
    Feng, Yiyu
    Feng, Wei
    Jie, Jiansheng
    Yang, Fangxu
    Li, Rongjin
    Hu, Wenping
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (07) : 2575 - 2580
  • [27] Modulating tunneling width and energy window for high-on-current two-dimensional tunnel field-effect transistors
    Zhou, Wenhan
    Zhang, Shengli
    Cao, Jiang
    Wu, Zhenhua
    Wang, Yangyang
    Zhang, Yunwei
    Yan, Zhong
    Qu, Hengze
    Zeng, Haibo
    NANO ENERGY, 2021, 81
  • [28] Compact Modeling of Two-Dimensional Field-Effect Biosensors
    Pasadas, Francisco
    El Grour, Tarek
    Marin, Enrique G.
    Medina-Rull, Alberto
    Toral-Lopez, Alejandro
    Cuesta-Lopez, Juan
    Ruiz, Francisco G.
    El Mir, Lassaad
    Godoy, Andres
    SENSORS, 2023, 23 (04)
  • [29] Hysteresis Effect in Two-Dimensional Bi2Te3 Nanoplate Field-Effect Transistors
    Liu, Junliang
    Pan, Wenwu
    Wang, Han
    Zhang, Zekai
    Zhang, Songqing
    Yuan, Guang
    Yuan, CaiLei
    Ren, Yongling
    Lei, Wen
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (01):
  • [30] Atomic-scale interface engineering for two-dimensional materials based field-effect transistors
    Hou, Xiangyu
    Jin, Tengyu
    Zheng, Yue
    Chen, Wei
    SMARTMAT, 2024, 5 (04):