The Schwarz Type Inequality for Harmonic Mappings of the Unit Disc with Boundary Normalization

被引:4
作者
Partyka, Dariusz [1 ,2 ]
Zajac, Jozef [1 ]
机构
[1] State Sch Higher Educ Chelm, Inst Math & Informat Technol, PL-22100 Chelm, Poland
[2] John Paul II Catholic Univ Lublin, Inst Math & Comp Sci, PL-20950 Lublin, Poland
关键词
Harmonic mappings; Poisson integral; Schwarz Lemma;
D O I
10.1007/s11785-014-0398-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be the class of all complex-valued harmonic functions F of the unit disk D into itself such that for every k is an element of {0, 1, 2} and almost every z is an element of T-k := {e(i theta) : 2k pi/3 < theta < 2(k + 1)pi/3} the radial limit of F at z belongs to the angular sector determined by the convex hull spanned by the origin and arc T-k. The sharp estimation of the modulus vertical bar F(z)vertical bar for z is an element of D in the class H is obtained and the extremal functions are determined.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 8 条
[1]  
AHLFORS L., 1966, Lectures on Quasiconformal Mappings
[2]  
Choquet G., 1993, COMPLEX VAR, V24, P47
[3]  
Duren P., 2004, CAMBRIDGE TRACTS MAT
[4]  
Duren P., 2000, THEORY SPACES
[5]  
Heinz E., 1959, PACIFIC J MATH, V9, P101, DOI [10.2140/pjm.1959.9.101, DOI 10.2140/PJM.1959.9.101]
[6]  
HENGARTNER W, 1986, J LOND MATH SOC, V33, P473
[7]  
Heyman W. K., 1976, SUBHARMONIC FUNCTION, VI
[8]  
[No title captured]