A field study reveals links between hyperaccumulating Sedum plants-associated bacterial communities and Cd/Zn uptake and translocation

被引:40
作者
Wu, Yingjie [1 ,2 ,4 ]
Santos, Susana S. [2 ]
Vestergard, Mette [2 ]
Gonzalez, Ana M. Martin [3 ]
Ma, Luyao [1 ]
Feng, Ying [1 ]
Yang, Xiaoe [1 ]
机构
[1] Zhejiang Univ, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Coll Environm & Resource Sci, Hangzhou, Peoples R China
[2] Aarhus Univ, Dept Agroecol, Forsogsver 1, Slagelse, Denmark
[3] Pacific Ecoinformat & Computat Ecol Lab, Berkeley, CA USA
[4] Sichuan Agr Univ, Coll Resources, Chengdu 611130, Peoples R China
基金
中国国家自然科学基金;
关键词
16S rRNA gene; Heavy metal; Sedum alfredii; Sedum plumbizincicola; Phytoremediation; ROOT-ASSOCIATED MICROBIOMES; BRASSICA-CHINENSIS L; RHIZOSPHERE; CADMIUM; SOIL; PHYTOEXTRACTION; ACCUMULATION; BULK;
D O I
10.1016/j.scitotenv.2021.150400
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperaccumulating ecotypes of Sedum plants are promising Cd/Zn phytoextractors, with potential for leveraging its rhizospheric or endophytic microbiomes to improve phytoremediation efficiency. However, research of bacteria associated with Sedum at field scale is still lacking. Here, we presented a detailed investigation of the bacterial microbiome of hyperaccumulating Sedum ecotypes (S. alfredii and S. plumbizincicola) and a nonhyperaccumulating S. alfredii ecotype, which grow at different soil environments. Moreover, we evaluated the heavy metal uptake and translocation potential of Sedum plants at different locations. The results showed that both HE ecotypes, contrary to the NHE, were efficient for phytoremediation in mine areas and farmlands. For NHE plants, rhizosphere co-occurrence networks were more complex than the networks of other compartments, while networks of HE plants were more complex in bulk soil and roots. The proportion of positive correlations within co-occurrence networks was higher for the HE plants, suggesting a greater potential for mutualistic interactions. Plant compartment and location predominantly shaped the microbiome assembly, and Proteobacteria, Actinobacteria and Acidobacteria dominated the bacterial communities of Sedum plants. Keystone taxa related to Zn hyperaccumulation are similar to those related to Cd hyperaccumulation, and nine bacterial genera had significantly positive correlation with Cd/Zn hyperaccumulation. Taxa, linked to phytoremediation in both mine and farmland (i.e. Actinospica and Streptomyces from Actinobacteria), could be targets for further investigation of their ability to promote metal phytoremediation of Sedum species. (c) 2021 Published by Elsevier B.V.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals [J].
Alvarez, Analia ;
Maria Saez, Juliana ;
Davila Costa, Jose Sebastian ;
Leticia Colin, Veronica ;
Soledad Fuentes, Maria ;
Antonio Cuozzo, Sergio ;
Susana Benimeli, Claudia ;
Alejandra Polti, Marta ;
Julia Amoroso, Maria .
CHEMOSPHERE, 2017, 166 :41-62
[2]   Functional overlap of the Arabidopsis leaf and root microbiota [J].
Bai, Yang ;
Mueller, Daniel B. ;
Srinivas, Girish ;
Garrido-Oter, Ruben ;
Potthoff, Eva ;
Rott, Matthias ;
Dombrowski, Nina ;
Muench, Philipp C. ;
Spaepen, Stijn ;
Remus-Emsermann, Mitja ;
Huettel, Bruno ;
McHardy, Alice C. ;
Vorholt, Julia A. ;
Schulze-Lefert, Paul .
NATURE, 2015, 528 (7582) :364-+
[3]   Azolla filiculoides L. as a source of metal-tolerant microorganisms [J].
Banach, Artur M. ;
Kuzniar, Agnieszka ;
Grzadziel, Jaroslaw ;
Wolinska, Agnieszka .
PLOS ONE, 2020, 15 (05)
[4]   Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots [J].
Banerjee, Samiran ;
Walder, Florian ;
Buechi, Lucie ;
Meyer, Marcel ;
Held, Alain Y. ;
Gattinger, Andreas ;
Keller, Thomas ;
Charles, Raphael ;
van der Heijden, Marcel G. A. .
ISME JOURNAL, 2019, 13 (07) :1722-1736
[5]   Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill [J].
Bell, Terrence H. ;
Cloutier-Hurteau, Benoit ;
Al-Otaibi, Fahad ;
Turmel, Marie-Claude ;
Yergeau, Etienne ;
Courchesne, Francois ;
St-Arnaud, Marc .
ENVIRONMENTAL MICROBIOLOGY, 2015, 17 (08) :3025-3038
[6]  
Berg G, 2014, FRONT MICROBIOL, V5, DOI [10.3389/fmicb.2014.00148, 10.3389/fmicb.2014.00491]
[7]   Deciphering microbial interactions and detecting keystone species with co-occurrence networks [J].
Berry, David ;
Widder, Stefanie .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[8]   Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J].
Bulgarelli, Davide ;
Rott, Matthias ;
Schlaeppi, Klaus ;
van Themaat, Emiel Ver Loren ;
Ahmadinejad, Nahal ;
Assenza, Federica ;
Rauf, Philipp ;
Huettel, Bruno ;
Reinhardt, Richard ;
Schmelzer, Elmon ;
Peplies, Joerg ;
Gloeckner, Frank Oliver ;
Amann, Rudolf ;
Eickhorst, Thilo ;
Schulze-Lefert, Paul .
NATURE, 2012, 488 (7409) :91-95
[9]   Research priorities for harnessing plant microbiomes in sustainable agriculture [J].
Busby, Posy E. ;
Soman, Chinmay ;
Wagner, Maggie R. ;
Friesen, Maren L. ;
Kremer, James ;
Bennett, Alison ;
Morsy, Mustafa ;
Eisen, Jonathan A. ;
Leach, Jan E. ;
Dangl, Jeffery L. .
PLOS BIOLOGY, 2017, 15 (03)
[10]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]