Predicting survival in heart failure: a risk score based on machine-learning and change point algorithm

被引:7
|
作者
Kim, Wonse [1 ,14 ]
Park, Jin Joo [2 ]
Lee, Hae-Young [3 ]
Kim, Kye Hun [4 ]
Yoo, Byung-Su [5 ]
Kang, Seok-Min [6 ]
Baek, Sang Hong [7 ]
Jeon, Eun-Seok [8 ]
Kim, Jae-Joong [9 ]
Cho, Myeong-Chan [10 ]
Chae, Shung Chull [11 ]
Oh, Byung-Hee [12 ]
Kook, Woong [1 ]
Choi, Dong-Ju [2 ,13 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Gwanak Ro 1, Seoul, South Korea
[2] Seoul Natl Univ, Cardiovasc Ctr, Dept Internal Med, Div Cardiol,Bundang Hosp, Seongnam, South Korea
[3] Seoul Natl Univ Hosp, Dept Internal Med, Seoul, South Korea
[4] Chonnam Natl Univ, Heart Res Ctr, Gwangju, South Korea
[5] Yonsei Univ, Dept Internal Med, Wonju Coll Med, Wonju, South Korea
[6] Yonsei Univ, Dept Internal Med, Coll Med, Seoul, South Korea
[7] Catholic Univ Korea, Dept Internal Med, Seoul, South Korea
[8] Sungkyunkwan Univ, Dept Internal Med, Coll Med, Seoul, South Korea
[9] Asan Med Ctr, Dept Internal Med, Seoul, South Korea
[10] Chungbuk Natl Univ, Dept Internal Med, Coll Med, Cheongju, South Korea
[11] Kyungpook Natl Univ, Dept Internal Med, Coll Med, Daegu, South Korea
[12] Mediplex Sejong Hosp, Dept Internal Med, Incheon, South Korea
[13] Seoul Natl Univ, Cardiovasc Ctr, Dept Internal Med, Div Cardiol,Bundang Hosp, Gumiro 166, Gyeonggi Do, Seongnam, South Korea
[14] MetaEyes, 41 Yonsei Ro 5Da Gil, Seoul, South Korea
关键词
Heart failure; Machine learning; Grouped Lasso; Prognostic model; Mortality; Change-point analysis; OPERATING CHARACTERISTIC CURVES; MORTALITY; MODEL; HOSPITALIZATION; DISCHARGE;
D O I
10.1007/s00392-021-01870-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective Machine learning (ML) algorithm can improve risk prediction because ML can select features and segment continuous variables effectively unbiased. We generated a risk score model for mortality with ML algorithms in East-Asian patients with heart failure (HF). Methods From the Korean Acute Heart Failure (KorAHF) registry, we used the data of 3683 patients with 27 continuous and 44 categorical variables. Grouped Lasso algorithm was used for the feature selection, and a novel continuous variable segmentation algorithm which is based on change-point analysis was developed for effectively segmenting the ranges of the continuous variables. Then, a risk score was assigned to each feature reflecting nonlinear relationship between features and survival times, and an integer score of maximum 100 was calculated for each patient. Results During 3-year follow-up time, 32.8% patients died. Using grouped Lasso, we identified 15 highly significant independent clinical features. The calculated risk score of each patient ranged between 1 and 71 points with a median of 36 (interquartile range: 27-45). The 3-year survival differed according to the quintiles of the risk score, being 80% and 17% in the 1st and 5th quintile, respectively. In addition, ML risk score had higher AUCs than MAGGIC-HF score to predict 1-year mortality (0.751 vs. 0.711, P < 0.001). Conclusions In East-Asian patients with HF, a novel risk score model based on ML and the new continuous variable segmentation algorithm performs better for mortality prediction than conventional prediction models.
引用
收藏
页码:1321 / 1333
页数:13
相关论文
共 50 条
  • [11] Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach
    Ketabi, Marzieh
    Andishgar, Aref
    Fereidouni, Zhila
    Sani, Maryam Mojarrad
    Abdollahi, Ashkan
    Vali, Mohebat
    Alkamel, Abdulhakim
    Tabrizi, Reza
    CLINICAL CARDIOLOGY, 2024, 47 (02)
  • [12] Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality
    Shin, Sheojung
    Austin, Peter C.
    Ross, Heather J.
    Abdel-Qadir, Husam
    Freitas, Cassandra
    Tomlinson, George
    Chicco, Davide
    Mahendiran, Meera
    Lawler, Patrick R.
    Billia, Filio
    Gramolini, Anthony
    Epelman, Slava
    Wang, Bo
    Lee, Douglas S.
    ESC HEART FAILURE, 2021, 8 (01): : 106 - 115
  • [13] A novel machine-learning algorithm for predicting mortality risk after hip fracture surgery
    Li, Yi
    Chen, Ming
    Lv, Houchen
    Yin, Pengbin
    Zhang, Licheng
    Tang, Peifu
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2021, 52 (06): : 1487 - 1493
  • [14] Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk
    Rahman, Polin
    Rifat, Ahmed
    Chy, Md IftehadAmjad
    Khan, Mohammad Monirujjaman
    Masud, Mehedi
    Aljahdali, Sultan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (01): : 757 - 775
  • [15] The Singapore Heart Failure Risk Score: Prediction of Survival in Southeast Asian Patients
    Yap, Jonathan
    Chia, Shaw Yang
    Lim, Fang Yi
    Allen, John C.
    Teo, Louis
    Sim, David
    Go, Yun Yun
    Jaufeerally, Fazlur Rehman
    Seow, Matthew
    Kwok, Bernard
    Liew, Reginald
    Lam, Carolyn S. P.
    Ching, Chi Keong
    ANNALS ACADEMY OF MEDICINE SINGAPORE, 2019, 48 (03) : 86 - 94
  • [16] A Machine Learning-Based Approach to Detect Survival of Heart Failure Patients
    Erdas, Cagatay Berke
    Olcer, Didem
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [17] Predicting Survival in Heart Failure With the Simple Risk Score; A2B Score
    Nakada, Yasuki
    Kawakami, Rika
    Ishihara, Satomi
    Ueda, Tomoya
    Ide, Tomomi
    Matsushima, Shoji
    Makaya, Miyuki
    TsuTsui, Hiroyuki
    Saito, Yoshihik
    CIRCULATION, 2018, 138
  • [18] Machine learning and statistical methods for predicting mortality in heart failure
    Mpanya, Dineo
    Celik, Turgay
    Klug, Eric
    Ntsinjana, Hopewell
    HEART FAILURE REVIEWS, 2021, 26 (03) : 545 - 552
  • [19] Comparison of machine learning and the regression-based EHMRG model for predicting early mortality in acute heart failure
    Austin, David E.
    Lee, Douglas S.
    Wang, Chloe X.
    Ma, Shihao
    Wang, Xuesong
    Porter, Joan
    Wang, Bo
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 365 : 78 - 84
  • [20] Machine learning in predicting heart failure survival: a review of current models and future prospects
    Kokori, Emmanuel
    Patel, Ravi
    Olatunji, Gbolahan
    Ukoaka, Bonaventure Michael
    Abraham, Israel Charles
    Ajekiigbe, Victor Oluwatomiwa
    Kwape, Julia Mimi
    Babalola, Adetola Emmanuel
    Udam, Ntishor Gabriel
    Aderinto, Nicholas
    HEART FAILURE REVIEWS, 2025, 30 (02) : 431 - 442