The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical Ap characteristic

被引:141
作者
Petermichl, S. [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1353/ajm.2007.0036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the norm of the Hilbert transform as an operator in the weighted space L-R(P)(omega) for 2 <= p < infinity is bounded by a constant multiple of the first power of the classical A(p) characteristic of omega. This result is sharp. We also prove a bilinear imbedding theorem with simple conditions.
引用
收藏
页码:1355 / 1375
页数:21
相关论文
共 27 条
[1]   Beltrami operators in the plane [J].
Astala, K ;
Iwaniec, T ;
Saksman, E .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (01) :27-56
[2]  
BAZAROV F, 1996, BEURLING LEMMA BELLM
[3]   ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES AND REVERSE JENSEN INEQUALITIES [J].
BUCKLEY, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (01) :253-272
[4]  
BUCKLEY SM, 1993, MICH MATH J, V40, P153
[5]   A PROOF OF PELCZYNSKI CONJECTURE FOR THE HAAR SYSTEM [J].
BURKHOLDER, DL .
STUDIA MATHEMATICA, 1988, 91 (01) :79-83
[6]  
BURKHOLDER DL, 1988, ASTERISQUE, P75
[7]  
BURKHOLDER DL, 1989, LECT NOTES MATH, V1384, P1
[8]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[9]   Extrapolation and sharp norm estimates for classical operators on weighted lebesgue spaces [J].
Dragicevic, O ;
Grafakos, L ;
Pereyra, C ;
Petermichl, S .
PUBLICACIONS MATEMATIQUES, 2005, 49 (01) :73-91
[10]   THE THEORY OF WEIGHTS AND THE DIRICHLET PROBLEM FOR ELLIPTIC-EQUATIONS [J].
FEFFERMAN, RA ;
KENIG, CE ;
PIPHER, J .
ANNALS OF MATHEMATICS, 1991, 134 (01) :65-124