Inseparability criteria based on bipartitions of N-qubit systems

被引:0
作者
Biswas, Asoka [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Phys, Rupnagar 140001, Punjab, India
关键词
Inseparability criteria; Many-qubit systems; Partial transposition; Partial separability; SEPARABILITY;
D O I
10.1007/s11128-015-0920-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new set of inequalities to detect inseparability in -qubit states. These are based on negative partial transposition and involve collective qubit-qubit correlations of any two partitions of the entire system. They reveal the rich texture of partial separability for different partitions and can discriminate between GHZ-type and W-type entanglement, as well. We introduce a new concept of relative entanglement of two different systems and two different partitions in a qubit-ensemble. The criteria in its generic form are also applicable to non-symmetric states and states with odd or even .
引用
收藏
页码:979 / 988
页数:10
相关论文
共 22 条
[1]   Classification of mixed three-qubit states -: art. no. 040401 [J].
Acín, A ;
Bruss, D ;
Lewenstein, M ;
Sanpera, A .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40401-1
[2]   Inseparability inequalities for higher order moments for bipartite systems [J].
Agarwal, GS ;
Biswas, A .
NEW JOURNAL OF PHYSICS, 2005, 7
[3]   Characterizing multiparticle entanglement in symmetric N-qubit states via negativity of covariance matrices [J].
Devi, A. R. Usha ;
Prabhu, R. ;
Rajagopal, A. K. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[4]   Collective multipolelike signatures of entanglement in symmetric N-qubit systems [J].
Devi, A. R. Usha ;
Prabhu, R. ;
Rajagopal, K. .
PHYSICAL REVIEW A, 2007, 76 (01)
[5]   Separability bounds on multiqubit moments due to positivity under partial transpose [J].
Devi, A. R. Usha ;
Rajagopal, A. K. .
PHYSICAL REVIEW A, 2008, 78 (06)
[6]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[7]   Separability and distillability of multiparticle quantum systems [J].
Dür, W ;
Cirac, JI ;
Tarrach, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (17) :3562-3565
[8]   Multipartite entanglement criterion from uncertainty relations [J].
Gillet, J. ;
Bastin, T. ;
Agarwal, G. S. .
PHYSICAL REVIEW A, 2008, 78 (05)
[9]   Covariance matrices and the separability problem [J].
Guehne, O. ;
Hyllus, P. ;
Gittsovich, O. ;
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (13)
[10]   Entropic uncertainty relations and entanglement -: art. no. 022316 [J].
Gühne, O ;
Lewenstein, M .
PHYSICAL REVIEW A, 2004, 70 (02) :022316-1