On Hadamard inequalities for refined convex functions via strictly monotone functions

被引:0
作者
Zahra, Moquddsa [1 ]
Abuzaid, Dina [2 ]
Farid, Ghulam [3 ]
Nonlaopon, Kamsing [4 ]
机构
[1] Dept Math, Univ Wah, Wah Cantt, Pakistan
[2] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia
[3] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad, Pakistan
[4] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 11期
关键词
convex function; refined; (a; h-m)-convex function; monotone function; Hadamard inequality; Riemann-Liouville fractional integrals; INTEGRAL-INEQUALITIES;
D O I
10.3934/math.20221096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define refined (alpha, h-m)-convex function with respect to a strictly monotone function. This function provides refinements of various well-known classes of functions for specific strictly monotone functions. By applying definition of this new function we prove the Hadamard inequalities for Riemann-Liouville fractional integrals. These inequalities give the refinements of fractional Hadamard inequalities for convex, (alpha, m)-convex, (h - m)-convex, (s, m)-convex, h-convex and many other related well-known classes of functions implicitly. Also, Hadamard type inequalities for k-fractional integrals are given.
引用
收藏
页码:20043 / 20057
页数:15
相关论文
共 23 条
  • [1] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877
  • [2] Dragomir S.S., 1995, SOOCHOW J MATH, V21, P335
  • [3] Farid G., FRACTIONAL HADAMARD
  • [4] k-fractional integral inequalities of Hadamard type for (h-m)-convex functions
    Farid, Ghulam
    Rehman, Atiq Ur
    Ul Ain, Qurat
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 119 - 140
  • [5] Hudzik H., 1994, AEQUATIONES MATH, V48, P100, DOI [DOI 10.1007/BF01837981, 10.1007/BF01837981]
  • [6] Hussain S, 2009, PUNJAB UNIV J MATH, V41, P51
  • [7] Kilbas A.A., 2006, THEORY APPL FRACTION
  • [8] On Hermite-Hadamard Type Integral Inequalities for n-times Differentiable Log-Preinvex Functions
    Latif, M. A.
    Dragomir, S. S.
    [J]. FILOMAT, 2015, 29 (07) : 1651 - 1661
  • [9] Mehmood S., 2020, Open J. Math. Sci., V4, P78, DOI 10.30538/oms2020.0097
  • [10] Mihesan V.G., 1993, A Generalization of the Convexity, Seminar on Functional Equations, Approximation and Convexity