Why network approach can promote a new way of thinking in biology

被引:41
作者
Giuliani, Alessandro [1 ]
Filippi, Simonetta [2 ,3 ]
Bertolaso, Marta [4 ]
机构
[1] Ist Super Sanita, Dept Environm & Primary Prevent, I-00161 Rome, Italy
[2] Univ Campus Biomed, Nonlinear Phys & Math Modeling Lab, Rome, Italy
[3] Univ Campus Biomed, Ctr Relat Astrophys, Rome, Italy
[4] Univ Campus Biomed, Fac Engn, Inst Philosophy Sci & Technol Practice, Rome, Italy
关键词
METABOLIC NETWORK; ESSENTIALITY;
D O I
10.3389/fgene.2014.00083
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This work deals with the particular nature of network-based approach in biology. We will comment about the shift from the consideration of the molecular layer as the definitive place where causative process start to the elucidation of the among elements (at any level of biological organization they are located) interaction network as the main goal of scientific explanation. This shift comes from the intrinsic nature of networks where the properties of a specific node are determined by its position in the entire network (top-down explanation) while the global network characteristics emerge from the nodes wiring pattern (bottom-up explanation). This promotes a "middle-out" paradigm formally identical to the time honored chemical thought holding big promises in the study of biological regulation.
引用
收藏
页数:5
相关论文
共 30 条
[1]  
[Anonymous], 1736, Commentarii Academiae Scientiarum Imperialis Petropolitanae
[2]   Discussion of measures of enrichment in virtual screening: Comparing the information content of descriptors with increasing levels of sophistication [J].
Bender, A ;
Glen, RC .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2005, 45 (05) :1369-1375
[3]   A recursive network approach can identify constitutive regulatory circuits in gene expression data [J].
Blasi, MF ;
Casorelli, I ;
Colosimo, A ;
Blasi, FS ;
Bignami, M ;
Giuliani, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 348 :349-370
[4]   The efficiency of multi-target drugs: the network approach might help drug design [J].
Csermely, P ;
Agoston, V ;
Pongor, S .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2005, 26 (04) :178-182
[5]   Quantitative Network Measures as Biomarkers for Classifying Prostate Cancer Disease States: A Systems Approach to Diagnostic Biomarkers [J].
Dehmer, Matthias ;
Mueller, Laurin A. J. ;
Emmert-Streib, Frank .
PLOS ONE, 2013, 8 (11)
[6]   Protein Contact Networks: An Emerging Paradigm in Chemistry [J].
Di Paola, L. ;
De Ruvo, M. ;
Paci, P. ;
Santoni, D. ;
Giuliani, A. .
CHEMICAL REVIEWS, 2013, 113 (03) :1598-1613
[7]   RECURRENCE-BASED TIME SERIES ANALYSIS BY MEANS OF COMPLEX NETWORK METHODS [J].
Donner, Reik V. ;
Small, Michael ;
Donges, Jonathan F. ;
Marwan, Norbert ;
Zou, Yong ;
Xiang, Ruoxi ;
Kurths, Juergen .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (04) :1019-1046
[8]   Collective motions and specific effectors: a statistical mechanics perspective on biological regulation [J].
Giuliani, Alessandro .
BMC GENOMICS, 2010, 11
[9]   ZUSAMMENHANG VON GRAPHENTHEORIE UND MO-THEORIE VON MOLEKELN MIT SYSTEMEN KONJUGIERTER BINDUNGEN [J].
GUNTHARD, HH ;
PRIMAS, H .
HELVETICA CHIMICA ACTA, 1956, 39 (06) :1645-1653
[10]   Universally sloppy parameter sensitivities in systems biology models [J].
Gutenkunst, Ryan N. ;
Waterfall, Joshua J. ;
Casey, Fergal P. ;
Brown, Kevin S. ;
Myers, Christopher R. ;
Sethna, James P. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (10) :1871-1878