RNA interference against a glioma-derived allele of EGFR induces blockade at G2M

被引:39
作者
Fan, QW
Weiss, WA
机构
[1] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Brain Tumor Res Ctr, San Francisco, CA 94143 USA
关键词
siRNA; EGFR; Delta EGFR; PI3; kinase; LY294002; combination therapy;
D O I
10.1038/sj.onc.1208227
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amplification and mutation of the epidermal growth factor receptor (EGFR) is common in astrocytoma. The most frequently occurring mutation (DeltaEGFR, EGFRvIII) deletes exons 2-7 from this receptor tyrosine kinase (RTK), and signals constitutively in the absence of ligand. DeltaEGFR is not found in normal tissue, and therefore represents an attractive therapeutic target. Here, we show that a small interfering RNA (siRNA) directed against the unique exon 1/exon 8 junction sequence of DeltaEGFR efficiently suppressed expression of DeltaEGFR in rodent fibroblasts and in two human glioblastoma cell lines. SiRNA-mediated depletion of DeltaEGFR led to reduction in the levels of phosphorylated Akt in glioma cells, was associated with increased apoptosis, and induced partial arrest at the G(2)M phase of the cell cycle. Inhibitors of PI3 kinase cooperated with siRNA treatment, leading to further increases in both cell cycle blockade and apoptosis. Importantly, cell cycle blockade could be reversed, and apoptosis rescued using a conditional allele of Akt, implicating Akt as a primary target of combination therapy. This study demonstrates the therapeutic potential of siRNA to impact DeltaEGFR as a glioma-specific target, and offers a mechanistic rationale for combining siRNA and small molecule inhibitor therapies against distinct components in the EGFR signaling pathway.
引用
收藏
页码:829 / 837
页数:9
相关论文
共 48 条
[1]   Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types [J].
Baselga, J ;
Rischin, D ;
Ranson, M ;
Calvert, H ;
Raymond, E ;
Kieback, DG ;
Kaye, SB ;
Gianni, L ;
Harris, A ;
Bjork, T ;
Averbuch, SD ;
Feyereislova, A ;
Swaisland, H ;
Rojo, F ;
Albanell, J .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (21) :4292-4302
[2]   Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1 [J].
Biggs, WH ;
Meisenhelder, J ;
Hunter, T ;
Cavenee, WK ;
Arden, KC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (13) :7421-7426
[3]  
BIGNER SH, 1990, CANCER RES, V50, P8017
[4]   Stable suppression of tumorigenicity by virus-mediated RNA interference [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
CANCER CELL, 2002, 2 (03) :243-247
[5]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[6]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[7]   Reversible G1 arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27KIP1 independent of MAPK activity [J].
Busse, D ;
Doughty, RS ;
Ramsey, TT ;
Russell, WE ;
Price, JO ;
Flanagan, WM ;
Shawver, LK ;
Arteaga, CL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (10) :6987-6995
[8]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[9]   Differential contribution of inhibitory phosphorylation of CDC2 and CDK2 for unperturbed cell cycle control and DNA integrity checkpoints [J].
Chow, JPH ;
Siu, WY ;
Ho, HTB ;
Ma, KHT ;
Ho, CC ;
Poon, RYC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (42) :40815-40828
[10]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789