Ensembles of Deep Convolutional Neural Networks for Detecting Melanoma in Dermoscopy Images

被引:1
作者
Tziomaka, Melina [1 ]
Maglogiannis, Ilias [1 ]
机构
[1] Univ Piraeus, Dept Digital Syst, Piraeus, Greece
来源
COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021) | 2021年 / 12876卷
关键词
Deep learning; Convolutional neural networks; Dermoscopy; Melanoma classification; EfficientNet; Ensemble models; CLASSIFICATION; PERFORMANCE; LESIONS; CANCER;
D O I
10.1007/978-3-030-88081-1_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Malignant melanoma is the deadliest form of skin cancer and is one of the most rapidly increasing cancers in the world. In this paper, a methodology for the SIIM-ISIC Melanoma Classification Challenge, where the goal is to detect melanoma from dermoscopic images, is described. The EfficientNet family of convolutional neural networks is utilized and extended for identifying malignant melanoma on a dataset of 58,457 dermoscopic images of pigmented skin lesions. This binary classification problem comes with a severe class imbalance, which is tackled using a loss balancing approach. Furthermore, the dataset contains images with different resolution sizes. This property is addressed by considering different model input resolutions. Lastly, an ensembling strategy of models, trained with different activation functions is applied to increase the diversity of the ensembler and to further improve individual results.
引用
收藏
页码:523 / 535
页数:13
相关论文
共 40 条
[1]   Computer-aided pattern classification system for dermoscopy images [J].
Abbas, Qaisar ;
Celebi, M. Emre ;
Fondon, Irene .
SKIN RESEARCH AND TECHNOLOGY, 2012, 18 (03) :278-289
[2]  
Bakheet S, 2017, COMPUTATION, V5, DOI 10.3390/computation5010004
[3]   Automated Quantification of Clinically Significant Colors in Dermoscopy Images and Its Application to Skin Lesion Classification [J].
Celebi, M. Emre ;
Zornberg, Azaria .
IEEE SYSTEMS JOURNAL, 2014, 8 (03) :980-984
[4]   Deep learning ensembles for melanoma recognition in dermoscopy images [J].
Codella, N. C. F. ;
Nguyen, Q. -B. ;
Pankanti, S. ;
Gutman, D. A. ;
Helba, B. ;
Halpern, A. C. ;
Smith, J. R. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2017, 61 (4-5)
[5]  
Codella N.C.F., 2018, ARXIV
[6]  
Combalia M, 2019, ARXIV
[7]   Automated Detection of Streaks in Dermoscopy Images [J].
Delibasis, K. ;
Kottari, K. ;
Maglogiannis, I. .
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, 2015, 458 :45-60
[8]  
Doukas Charalampos, 2015, Methods Mol Biol, V1256, P435, DOI 10.1007/978-1-4939-2172-0_29
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   Improving the performance of convolutional neural network for skin image classification using the response of image analysis filters [J].
Georgakopoulos, S. V. ;
Kottari, K. ;
Delibasis, K. ;
Plagianakos, V. P. ;
Maglogiannis, I. .
NEURAL COMPUTING & APPLICATIONS, 2019, 31 (06) :1805-1822