Cascading Convolutional Neural Network for Steel Surface Defect Detection

被引:15
|
作者
Lin, Chih-Yang [1 ]
Chen, Cheng-Hsun [1 ]
Yang, Ching-Yuan [1 ]
Akhyar, Fityanul [1 ]
Hsu, Chao-Yung [2 ]
Ng, Hui-Fuang [3 ]
机构
[1] Yuan Ze Univ, Dept Elect Engn, Taoyuan, Taiwan
[2] China Steel Corp, Automat & Instrumentat Syst Dev Sect, Kaohsiung, Taiwan
[3] Univ Tunku Abdul Rahman, Dept Comp Sci, FICT, Petaling Jaya, Malaysia
关键词
Fully convolutional networks; Defect detection; SSD; ResNet;
D O I
10.1007/978-3-030-20454-9_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Steel is the most important material in the world of engineering and construction. Modern steelmaking relies on computer vision technologies, like optical cameras to monitor the production and manufacturing processes, which helps companies improve product quality. In this paper, we propose a deep learning method to automatically detect defects on the steel surface. The architecture of our proposed system is separated into two parts. The first part uses a revised version of single shot multibox detector (SSD) model to learn possible defects. Then, deep residual network (ResNet) is used to classify three types of defects: Rust, Scar, and Sponge. The combination of these two models is investigated and discussed thoroughly in this paper. This work additionally employs a real industry dataset to confirm the feasibility of the proposed method and make sure it is applicable to real-world scenarios. The experimental results show that the proposed method can achieve higher precision and recall scores in steel surface defect detection.
引用
收藏
页码:202 / 212
页数:11
相关论文
共 50 条
  • [1] A lightweight convolutional neural network for surface defect detection in strip steel
    Yang, Chunlong
    Lv, Donghao
    Tian, Xu
    Wang, Chengzhi
    Yang, Peihong
    Zhang, Yong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [2] A Surface Defect Detection Based on Convolutional Neural Network
    Wu, Xiaojun
    Cao, Kai
    Gu, Xiaodong
    COMPUTER VISION SYSTEMS, ICVS 2017, 2017, 10528 : 185 - 194
  • [3] A deep convolutional neural network for detection of rail surface defect
    Yuan, Hao
    Chen, Hao
    Liu, ShiWang
    Lin, Jun
    Luo, Xiao
    2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2019,
  • [4] Adaptive convolutional neural network for aluminum surface defect detection
    Wang, Yu
    Wei, Yun-Sheng
    Wu, Zhi-Ze
    He, Zhi-Huang
    Wang, Kai
    Ding, Ze-Sheng
    Zou, Le
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 227
  • [5] Steel surface defect recongnition based on a lightweight convolutional neural network
    Li D.
    Wang M.
    Liu J.
    Chen F.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (03): : 240 - 248
  • [6] An efficient lightweight convolutional neural network for industrial surface defect detection
    Zhang, Dehua
    Hao, Xinyuan
    Wang, Dechen
    Qin, Chunbin
    Zhao, Bo
    Liang, Linlin
    Liu, Wei
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10651 - 10677
  • [7] An Autoencoder with Convolutional Neural Network for Surface Defect Detection on Cast Components
    Chamberland, Olivia
    Reckzin, Mark
    Hashim, Hashim A.
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2023, 23 (04) : 1633 - 1644
  • [8] Bearing surface defect detection based on improved convolutional neural network
    Fu, Xian
    Yang, Xiao
    Zhang, Ningning
    Zhang, RuoGu
    Zhang, Zhuzhu
    Jin, Aoqun
    Ye, Ruiwen
    Zhang, Huiling
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 12341 - 12359
  • [9] A novel deep convolutional neural network algorithm for surface defect detection
    Zhang, Dehua
    Hao, Xinyuan
    Liang, Linlin
    Liu, Wei
    Qin, Chunbin
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (05) : 1616 - 1632
  • [10] An efficient lightweight convolutional neural network for industrial surface defect detection
    Dehua Zhang
    Xinyuan Hao
    Dechen Wang
    Chunbin Qin
    Bo Zhao
    Linlin Liang
    Wei Liu
    Artificial Intelligence Review, 2023, 56 : 10651 - 10677