Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability

被引:1
作者
Sun Wei [1 ]
Lu Chong [1 ]
Lei Zhu [2 ]
Zhong Jia-Yong [3 ]
机构
[1] China Inst Atom Energy, Dept Nucl Phys, Beijing 102413, Peoples R China
[2] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Ctr Appl Phys & Technol,HEDPS, Beijing 100871, Peoples R China
[3] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
magnetic field; Rayleigh-Taylor instability; Kelvin-Helmholtz instability; PLASMA; CODE;
D O I
10.7498/aps.71.20220362
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rayleigh-Taylor instability (RTI) is a fundamental physical phenomenon in fluids and plasmas, and plays a significant role in astrophysics, space physics, and engineering. Especially in inertial confinement fusion (ICF) research, numerous experimental and simulation results have identified RTI as one of the most significant barriers to achieving fusion. Understanding the origin and development of RTI will be conducive to formulating mitigation measures to curb the growth of instability, thereby improving the odds of ICF success. Although there have existed many theoretical and experimental studies of RTI under high energy density, there are few experiments to systematically explore the influence of magnetic fields on the evolution of magnetized RTI. Here, a new experimental scheme is proposed based on the Shenguang-II laser facility on which the nanosecond laser beams are used to drive modulation targets of polystyrene (CH) and low-density foam layers. A shock wave is generated after the laser's CH modulation layer has been ablated, and propagates through CH to low-density foam. Moreover, Richtmyer-Meshkov instability is triggered off when the shock wave accelerates the target. When the laser pulse ends, the shock wave evolves into a blast wave, causing the system to decelerate, resulting in RTI in the reference system of the interface. In this paper the open-source radiation MHD simulation code (FLASH) is used to simulate the RTI generated by a laser-driven modulation target. The evolution of RTI under no magnetic field, under Biermann self-generated magnetic field, and under different applied magnetic fields are systematically investigated and compared with each other. The simulation results show that the Biermann self-generated magnetic field and the applied magnetic field parallel to flow direction do not change the interface dynamics in the evolution process of RTI. Nevertheless, the applied magnetic field perpendicular to flow direction can stabilize RTI and the Kelvin-Helmholtz vortex at the tail of the RTI spike. Magnetic pressure plays a decisive role. The present results provide a reference for the follow-up study of target physics related to ICF and deepen the understanding of the fluid mixing process.
引用
收藏
页数:11
相关论文
共 38 条
  • [1] Design of a high energy density experiment to measure the suppression of hydrodynamic instability in an applied magnetic field
    Barbeau, Zoe
    Raman, Kumar
    Manuel, Mario
    Nagel, Sabrina
    Shivamoggi, Bhimsen
    [J]. PHYSICS OF PLASMAS, 2022, 29 (01)
  • [2] Development of Indirectly Driven Shock Tube Targets for Counter-Propagating Shear-Driven Kelvin-Helmholtz Experiments on the National Ignition Facility
    Capelli, D.
    Schmidt, D. W.
    Cardenas, T.
    Rivera, G.
    Randolph, R. B.
    Fierro, F.
    Merritt, E. C.
    Flippo, K. A.
    Doss, F. W.
    Kline, J. L.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2016, 70 (02) : 316 - 323
  • [3] Chandrasekhar S, 1961, HYDRODYNAMIC HYDROMA, ppp481
  • [4] Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs
    Clark, D. S.
    Haan, S. W.
    Cook, A. W.
    Edwards, M. J.
    Hammel, B. A.
    Koning, J. M.
    Marinak, M. M.
    [J]. PHYSICS OF PLASMAS, 2011, 18 (08)
  • [5] Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes
    Fryxell, B
    Olson, K
    Ricker, P
    Timmes, FX
    Zingale, M
    Lamb, DQ
    MacNeice, P
    Rosner, R
    Truran, JW
    Tufo, H
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2000, 131 (01) : 273 - 334
  • [6] Observation of Self-Similarity in the Magnetic Fields Generated by the Ablative Nonlinear Rayleigh-Taylor Instability
    Gao, L.
    Nilson, P. M.
    Igumenschev, I. V.
    Fiksel, G.
    Yan, R.
    Davies, J. R.
    Martinez, D.
    Smalyuk, V.
    Haines, M. G.
    Blackman, E. G.
    Froula, D. H.
    Betti, R.
    Meyerhofer, D. D.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (18)
  • [7] High-mode Rayleigh-Taylor growth in NIF ignition capsules
    Hammel, B. A.
    Haan, S. W.
    Clark, D. S.
    Edwards, M. J.
    Langer, S. H.
    Marinak, M. M.
    Patel, M. V.
    Salmonson, J. D.
    Scott, H. A.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2010, 6 (02) : 171 - 178
  • [8] Laser-Produced Magnetic-Rayleigh-Taylor Unstable Plasma Slabs in a 20 T Magnetic Field
    Khiar, B.
    Revet, G.
    Ciardi, A.
    Burdonov, K.
    Filippov, E.
    Beard, J.
    Cerchez, M.
    Chen, S. N.
    Gangolf, T.
    Makarov, S. S.
    Ouille, M.
    Safronova, M.
    Skobelev, I. Yu.
    Soloviev, A.
    Starodubtsev, M.
    Willi, O.
    Pikuz, S.
    Fuchs, J.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [9] Model experiment of magnetic field amplification in laser-produced plasmas via the Richtmyer-Meshkov instability
    Kuramitsu, Y.
    Ohnishi, N.
    Sakawa, Y.
    Morita, T.
    Tanji, H.
    Ide, T.
    Nishio, K.
    Gregory, C. D.
    Waugh, J. N.
    Booth, N.
    Heathcote, R.
    Murphy, C.
    Gregori, G.
    Smallcombe, J.
    Barton, C.
    Diziere, A.
    Koenig, M.
    Woolsey, N.
    Matsumoto, Y.
    Mizuta, A.
    Sugiyama, T.
    Matsukiyo, S.
    Moritaka, T.
    Sano, T.
    Takabe, H.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (03)
  • [10] Numerical study of the knot structure in scaled protostellar jets by laboratory laser-driven plasmas
    Lei, Z.
    Zhao, Z. H.
    Yao, W. P.
    Xie, Y.
    Jiao, J. L.
    Zhou, C. T.
    Zhu, S. P.
    He, X. T.
    Qiao, B.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (09)