SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection

被引:52
|
作者
Lee, Minhyeok [1 ]
Park, Chaewon [1 ]
Cho, Suhwan [1 ]
Lee, Sangyoun [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
来源
关键词
RGB-D salient object detection; Superpixel; Prototype learning; Reliance selection;
D O I
10.1007/978-3-031-19818-2_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D salient object detection (SOD) has been in the spotlight recently because it is an important preprocessing operation for various vision tasks. However, despite advances in deep learning-based methods, RGB-D SOD is still challenging due to the large domain gap between an RGB image and the depth map and low-quality depth maps. To solve this problem, we propose a novel superpixel prototype sampling network (SPSN) architecture. The proposed model splits the input RGB image and depth map into component superpixels to generate component prototypes. We design a prototype sampling network so that the network only samples prototypes corresponding to salient objects. In addition, we propose a reliance selection module to recognize the quality of each RGB and depth feature map and adaptively weight them in proportion to their reliability. The proposed method makes the model robust to inconsistencies between RGB images and depth maps and eliminates the influence of non-salient objects. Our method is evaluated on five popular datasets, achieving state-of-the-art performance. We prove the effectiveness of the proposed method through comparative experiments.
引用
收藏
页码:630 / 647
页数:18
相关论文
共 50 条
  • [1] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [2] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [3] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [4] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [5] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [6] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [7] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [8] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192
  • [9] DYNAMIC SELECTION NETWORK FOR RGB-D SALIENT OBJECT DETECTION
    Zhou, Jinlin
    Luo, Zhiming
    Li, Shaozi
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 776 - 780
  • [10] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559