Autotuning FPGA design parameters for performance and power

被引:12
作者
Mametjanov, Azamat [1 ]
Balaprakash, Prasanna [1 ,2 ]
Choudary, Chekuri [3 ]
Hovland, Paul D. [1 ]
Wild, Stefan M. [1 ]
Sabin, Gerald [3 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA
[3] RNET Technol Inc, Dayton, OH 45459 USA
来源
2015 IEEE 23RD ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM) | 2015年
关键词
field programmable gate arrays; tuned circuits; optimal design and tuning; power optimization;
D O I
10.1109/FCCM.2015.54
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Many factors affect the performance and power characteristics of FPGA designs. Among them are the optimization parameters for synthesis, map, and place-and-route design tools. Choosing the right combination of these parameters can substantially lower power requirements, while still satisfying timing constraints. Finding such an improvement, however, requires significant experimentation by the FPGA designer. Exhaustive search through the parameter space is an automated alternative to experimentation but is intractable because of the large search space and the long build time of each parameter combination. In this paper, we propose a machine-learning-based approach to tune FPGA design parameters. It performs sampling-based reduction of the parameter space and guides the search toward promising parameter configurations. In our experiments, such selective sampling finds parameter configurations that meet the timing constraints and are within 0.2% of the optimal power consumption. Furthermore, these configurations are found in an order of magnitude less time compared with exhaustive search. Such speedups can substantially alleviate bottlenecks in the FPGA design process.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [41] FPGA Implementation of Variable Step Power Inversion Array for BeiDou Receiver
    Jia, Zhuoya
    Ni, Shuyan
    Luo, Yalun
    Zhang
    Mao, Wenxuan
    IEEE ACCESS, 2023, 11 (109390-109396): : 109390 - 109396
  • [42] VEGa: A High Performance Vehicular Ethernet Gateway on Hybrid FPGA
    Shreejith, Shanker
    Mundhenk, Philipp
    Ettner, Andreas
    Fahmy, Suhaib A.
    Steinhorst, Sebastian
    Lukasiewycz, Martin
    Chakraborty, Samarjit
    IEEE TRANSACTIONS ON COMPUTERS, 2017, 66 (10) : 1790 - 1803
  • [43] Shrinking FPGA Static Power via Machine Learning-Based Power Gating and Enhanced Routing
    Seifoori, Zeinab
    Asadi, Hossein
    Stojilovic, Mirjana
    IEEE ACCESS, 2021, 9 : 115599 - 115619
  • [44] Power minimization algorithms for LUT-Based FPGA technology mapping
    Li, H
    Katkoori, S
    Mak, WK
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2004, 9 (01) : 33 - 51
  • [45] An FPGA Architecture and CAD Flow Supporting Dynamically Controlled Power Gating
    Bsoul, Assem A. M.
    Wilton, Steven J. E.
    Tsoi, Kuen Hung
    Luk, Wayne
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2016, 24 (01) : 178 - 191
  • [46] User Driven FPGA-Based Design Automated Framework of Deep Neural Networks for Low-Power Low-Cost Edge Computing
    Belabed, Tarek
    Coutinho, Maria Gracielly F.
    Fernandes, Marcelo A. C.
    Sakuyama, Carlos Valderrama
    Souani, Chokri
    IEEE ACCESS, 2021, 9 : 89162 - 89180
  • [47] Exploring the design-space for FPGA-based implementation of RSA
    Cilardo, A
    Mazzeo, A
    Romano, L
    Saggese, GP
    MICROPROCESSORS AND MICROSYSTEMS, 2004, 28 (04) : 183 - 191
  • [48] SYSTEM-INTEGRATION FEATURES AND DEVELOPMENT TOOLS KEY TO FPGA DESIGN
    FAWCETT, BK
    MICROPROCESSORS AND MICROSYSTEMS, 1994, 18 (09) : 547 - 560
  • [49] Exploring Static and Dynamic Flash-based FPGA Design Topologies
    Abusultan, Monther
    Khatri, Sunil P.
    PROCEEDINGS OF THE 34TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD), 2016, : 416 - 419
  • [50] Design of Doppler parameters estimation circuit
    Guo, Chenguang
    Xu, Jiancheng
    Zhang, Hui
    IET CIRCUITS DEVICES & SYSTEMS, 2019, 13 (04) : 565 - 570