Autotuning FPGA design parameters for performance and power

被引:12
作者
Mametjanov, Azamat [1 ]
Balaprakash, Prasanna [1 ,2 ]
Choudary, Chekuri [3 ]
Hovland, Paul D. [1 ]
Wild, Stefan M. [1 ]
Sabin, Gerald [3 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA
[3] RNET Technol Inc, Dayton, OH 45459 USA
来源
2015 IEEE 23RD ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM) | 2015年
关键词
field programmable gate arrays; tuned circuits; optimal design and tuning; power optimization;
D O I
10.1109/FCCM.2015.54
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Many factors affect the performance and power characteristics of FPGA designs. Among them are the optimization parameters for synthesis, map, and place-and-route design tools. Choosing the right combination of these parameters can substantially lower power requirements, while still satisfying timing constraints. Finding such an improvement, however, requires significant experimentation by the FPGA designer. Exhaustive search through the parameter space is an automated alternative to experimentation but is intractable because of the large search space and the long build time of each parameter combination. In this paper, we propose a machine-learning-based approach to tune FPGA design parameters. It performs sampling-based reduction of the parameter space and guides the search toward promising parameter configurations. In our experiments, such selective sampling finds parameter configurations that meet the timing constraints and are within 0.2% of the optimal power consumption. Furthermore, these configurations are found in an order of magnitude less time compared with exhaustive search. Such speedups can substantially alleviate bottlenecks in the FPGA design process.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [21] Design Methodology for Offloading Software Executions to FPGA
    Tomasz Patyk
    Perttu Salmela
    Teemu Pitkänen
    Pekka Jääskeläinen
    Jarmo Takala
    Journal of Signal Processing Systems, 2011, 65 : 245 - 259
  • [22] Performance analysis and optimization of cluster-based mesh FPGA architectures: design methodology and CAD tool support
    Chtourou, Sonda
    Marrakchi, Zied
    Amouri, Emna
    Pangracious, Vinod
    Abid, Mohamed
    Mehrez, Habib
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2017, 25 (03) : 2044 - 2054
  • [23] Performance Modeling for CNN Inference Accelerators on FPGA
    Ma, Yufei
    Cao, Yu
    Vrudhula, Sarma
    Seo, Jae-Sun
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (04) : 843 - 856
  • [24] Implementation of a low-power LVQ architecture on FPGA
    Chalbi, Najoua
    Boubaker, Mohamed
    Bedoui, Mohamed Hedi
    IET CIRCUITS DEVICES & SYSTEMS, 2017, 11 (06) : 597 - 604
  • [25] Power-Optimal Mapping of CNN Applications to Cloud-Based Multi-FPGA Platforms
    Shan, Junnan
    Lazarescu, Mihai T.
    Cortadella, Jordi
    Lavagno, Luciano
    Casu, Mario R.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (12) : 3073 - 3077
  • [26] Design and FPGA Implementation of Block Synchronizer for Viterbi Decoder
    Sharma, Satish
    Sunil
    Vasudevamurthy, H. S.
    Valarmathi, N.
    2013 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2013, : 908 - 912
  • [27] High performance and low-power finite impulse response filter based on ring topology with modified retiming serial multiplier on FPGA
    Rashidi, Bahram
    IET SIGNAL PROCESSING, 2013, 7 (08) : 743 - 753
  • [28] FPGA-NHAP: A General FPGA-Based Neuromorphic Hardware Acceleration Platform With High Speed and Low Power
    Liu, Yijun
    Chen, Yuehai
    Ye, Wujian
    Gui, Yu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (06) : 2553 - 2566
  • [29] FPGA-Based Optimized Design of Montgomery Modular Multiplier
    Abd-Elkader, Ahmed A. H.
    Rashdan, Mostafa
    Hasaneen, El-Sayed A. M.
    Hamed, Hesham F. A.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (06) : 2137 - 2141
  • [30] Design and implementation of parallel CRC algorithm for fibre channel on FPGA
    Wu Chuxiong
    Shi Haifeng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7827 - 7830