Autotuning FPGA design parameters for performance and power

被引:12
作者
Mametjanov, Azamat [1 ]
Balaprakash, Prasanna [1 ,2 ]
Choudary, Chekuri [3 ]
Hovland, Paul D. [1 ]
Wild, Stefan M. [1 ]
Sabin, Gerald [3 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA
[3] RNET Technol Inc, Dayton, OH 45459 USA
来源
2015 IEEE 23RD ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM) | 2015年
关键词
field programmable gate arrays; tuned circuits; optimal design and tuning; power optimization;
D O I
10.1109/FCCM.2015.54
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Many factors affect the performance and power characteristics of FPGA designs. Among them are the optimization parameters for synthesis, map, and place-and-route design tools. Choosing the right combination of these parameters can substantially lower power requirements, while still satisfying timing constraints. Finding such an improvement, however, requires significant experimentation by the FPGA designer. Exhaustive search through the parameter space is an automated alternative to experimentation but is intractable because of the large search space and the long build time of each parameter combination. In this paper, we propose a machine-learning-based approach to tune FPGA design parameters. It performs sampling-based reduction of the parameter space and guides the search toward promising parameter configurations. In our experiments, such selective sampling finds parameter configurations that meet the timing constraints and are within 0.2% of the optimal power consumption. Furthermore, these configurations are found in an order of magnitude less time compared with exhaustive search. Such speedups can substantially alleviate bottlenecks in the FPGA design process.
引用
收藏
页码:84 / 91
页数:8
相关论文
共 50 条
  • [1] Power Optimized Design Framework for FPGA Clusters
    Iizuka K.
    Ito K.
    Yasudo R.
    Amano H.
    IPSJ Transactions on System LSI Design Methodology, 2024, 17 : 77 - 86
  • [2] A new power-aware FPGA design metric
    Templin, Joshua R.
    Hamlet, Jason R.
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2015, 5 (01) : 1 - 11
  • [3] Capacitance Scaling Aware Power Optimized Register Design And Implementation on 28nm FPGA
    Banshal, Sumit Kumar
    Pandey, Bishwajeet
    Brenda, S. J.
    2014 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2014,
  • [4] Maximizing performance in FPGA systems
    Xilinx Inc.
    Electron. Eng. Times, 2006, 1404 (50):
  • [5] OmpSs@FPGA Framework for High Performance FPGA Computing
    Miguel de Haro, Juan
    Bosch, Jaume
    Filgueras, Antonio
    Vidal, Miquel
    Jimenez-Gonzalez, Daniel
    Alvarez, Carlos
    Martorell, Xavier
    Ayguade, Eduard
    Labarta, Jesus
    IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (12) : 2029 - 2042
  • [6] FPGA Power Reduction by Guarded Evaluation
    Anderson, Jason H.
    Ravishankar, Chirag
    FPGA 10, 2010, : 157 - 166
  • [7] Design, FPGA-based Implementation and Performance of a Pseudo Random Number Generator of Chaotic Sequences
    Dridi, Fethi
    El Assad, Safwan
    Youssef, Wajih El Hadj
    Machhout, Mohsen
    Samhat, Abed Ellatif
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2021, 21 (02) : 41 - 48
  • [8] Design and Implementation of Asynchronous Processor on FPGA
    Shin, Ziho
    Oh, Myeong-Hoon
    IEEE ACCESS, 2022, 10 : 118370 - 118379
  • [9] Design of a CDMA system in FPGA technology
    Bererber, S. M.
    Wang, C.
    Wei, K. K.
    2007 IEEE 65TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6, 2007, : 3061 - 3065
  • [10] Precision Power Measurements of FPGA-MPSoCs
    Drehmel, Robert
    Hefele, Markus
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1114 - 1120